Transition to exhaustion: clues for cancer immunotherapy

Research on immune cells “exhausted” by chronic viral infection provides clues on how to refine cancer immunotherapy. The results were published Tuesday, Dec. 3 in Immunity. Scientists at Emory Vaccine Center, led by Rafi Ahmed, PhD, have learned about exhausted CD8 T cells, based on studying mice with chronic viral infections. In the presence of persistent virus or cancer, CD8 T cells lose much of their ability to fight disease, and display inhibitory checkpoint proteins Read more

Radiologists wrestle with robots - ethically

Emory bioethicist John Banja says: don’t believe the hype about AI replacing Read more

Opioids: crunching the Tweets

The aim is to be able to spot patterns of overdoses faster than prescription drug monitoring Read more

Peter Wenner

Probing hyperexcitability in fragile X syndrome

Researchers at Emory University School of Medicine have gained insight into a feature of fragile X syndrome, which is also seen in other neurological and neurodevelopmental disorders.

In a mouse model of fragile X syndrome, homeostatic mechanisms that would normally help brain cells adjust to developmental changes don’t work properly. This helps explain why cortical hyperexcitability, which is linked to sensory sensitivity and seizure susceptibility, gradually appears during brain development.

Studying a model of fragile X syndrome, Emory researchers were looking at neurons displaying single spiking and multi-spiking behavior. 

These physiological insights could help guide clinical research and efforts at early intervention, the scientists say. The results were published Feb. 5 by Cell Reports (open access).

Fragile X syndrome is the most common inherited form of intellectual disability and a leading single-gene cause of autism. Individuals with fragile X syndrome often display sensory sensitivity and some — about 15 percent— have seizures.

Scientists’ explanation for these phenomena is cortical hyperexcitability, meaning that the response of the cortex (the outer part of the brain) to sensory input is more than typical. Cortical hyperexcitability has also been observed in the broader category of autism spectrum disorder, as well as migraine or after a stroke.

At Emory, graduate student Pernille Bülow forged a collaboration between Peter Wenner, PhD and Gary Bassell, PhD. Wenner, interested in homeostatic plasticity, and Bassell, an expert in fragile X neurobiology, wanted to investigate why a mechanism called homeostatic intrinsic plasticity does not compensate for the changes in the brain brought about in fragile X syndrome. More here.

Posted on by Quinn Eastman in Neuro Leave a comment