Life-saving predictions from the ICU

Similar to the “precogs” who predict crime in the movie Minority Report, but for sepsis, the deadly response to infection. Read more

Five hot projects at Emory in 2017

Five hot projects at Emory in 2017: CRISPR gene editing for HD, cancer immunotherapy mechanics, memory enhancement, Zika immunology, and antivirals from Read more

Shaking up thermostable proteins

Imagine a shaker table, where kids can assemble a structure out of LEGO bricks and then subject it to a simulated earthquake. Biochemists face a similar task when they are attempting to design thermostable proteins, with heat analogous to shaking. Read more

pentose phosphate pathway

Orange lichens are source for potential anticancer drug

An orange pigment found in lichens and rhubarb called parietin may have potential as an anti-cancer drug, scientists at Winship Cancer Institute of Emory University have discovered.

The results were published in Nature Cell Biology on October 19.

Caloplaca_Fenwick

Parietin, shown to have anticancer activity in the laboratory, is a dominant pigment in Caloplaca lichens. Note: this study did not assess the effects of eating lichens or rhubarb. Photo courtesy of www.aphotofungi.com

Parietin, also known as physcion, could slow the growth of and kill human leukemia cells obtained directly from patients, without obvious toxicity to human blood cells, the authors report. The pigment could also inhibit the growth of human cancer cell lines, derived from lung and head and neck tumors, when grafted into mice.

A team of researchers led by Jing Chen, PhD, discovered the properties of parietin because they were looking for inhibitors for the metabolic enzyme 6PGD (6-phosphogluconate dehydrogenase). 6PGD is part of the pentose phosphate pathway, which supplies cellular building blocks for rapid growth. Researchers have already found 6PGD enzyme activity increased in several types of cancer cells.

“This is part of the Warburg effect, the distortion of cancer cells’ metabolism,” says Chen, professor of hematology and medical oncology at Emory University School of Medicine and Winship Cancer Institute. “We found that 6PGD is an important metabolic branch point in several types of cancer cells.” Read more

Posted on by Quinn Eastman in Cancer Leave a comment