Exosomes as potential biomarkers of radiation exposure

Exosomes = potential biomarkers of radiation in the Read more

Before the cardiologist goes nuclear w/ stress #AHA17

Measuring troponin in CAD patients before embarking on stress testing may provide Read more

Virus hunting season open

Previously unknown viruses, identified by Winship + UCSF scientists, come from a patient with a melanoma that had metastasized to the Read more

pediatrics

#AHA17 highlight: cardiac pacemaker cells

At the American Heart Association Scientific Sessions meeting this week, Hee Cheol Cho’s lab is presenting three abstracts on pacemaker cells. These cells make up the sinoatrial node, which generates electrical impulses driving our heart beats. Knowing how to engineer them could enhance cardiologists’ ability to treat arrhythmias, especially in pediatric patients, but that goal is still some distance away.

Just a glimpse of the challenge comes from graduate student Sandra Grijalva’s late breaking oral abstract describing “Induced Pacemaker Spheroids as a Model to Reverse-Engineer the Native Sinoatrial Node”, which was presented yesterday.

Cho has previously published how induced pacemaker cells can be created by introducing the TBX18 gene into rat cardiac muscle cells. In the new research, when a spheroid of induced pacemaker cells was surrounded by a layer of cardiac muscle cells, the IPM cells were able to drive the previously quiescent nearby cells at around 145 beats per minute. [For reference, rats’ hearts beat in living animals at around 300 beats per minute.] Read more

Posted on by Quinn Eastman in Heart Leave a comment

Beyond CF – potential byproducts of precision medicine

Just a quick comment on the potential of research being conducted by Eric Sorscher, who came to Emory from University of Alabama, Birmingham in 2015 and is now a Georgia Research Alliance Eminent Scholar. While Sorscher’s lab is working on advancing new treatments for cystic fibrosis patients who currently do not benefit from available drugs, it was intriguing to learn of potential side benefits beyond cystic fibrosis.

Cystic fibrosis is caused by mutations in the CFTR gene, which encodes a protein with important functions in cells that produce mucus, sweat, saliva, tears and digestive enzymes. But other things can impair the functioning of the CFTR protein besides genetic mutations. Namely, smoking. Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Ebola’s capriciousness in kids

Anita McElroy, a pediatric infectious disease specialist at Emory, and her colleagues at the CDC, led by Christina Spiropoulou, have been getting some attention for their biomarker research on Ebola virus infection. Sheri Fink from the New York Times highlighted their work in a Nov. 9 report on the infection’s capriciousness. Genetics may also play a role in surviving Ebola infection, as recent animal research has suggested.

McElroy’s team’s findings attracted notice because their results suggest that Ebola virus disease may affect children differently and thus, children may benefit from different treatment regimens than those for adults. The authors write that early intervention to prevent injury to the lining of blood vessels — using statins, possibly — might be a therapeutic strategy in pediatric patients. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Dissecting how chronic stress leads to depression

How can we study depression and antidepressants in animals? They can’t talk and tell us how they’re feeling. Previously, researchers have used the model of “behavioral despair,” with examples of the forced swimming test or the tail suspension test.

Shannon Gourley, PhD

Several psychiatrists have been arguing that a new framework is needed, which better simulates aspects of depression in humans, such as the variety of behavioral changes and the several week time period needed for antidepressants to function. This new framework could help illuminate how depression develops, and lead to new antidepressants that are effective for more people.

Shannon Gourley, who recently joined the Emory-Children’s Pediatric Research Center has been taking the approach of examining the lack of motivation and self-defeating behavior that are integral parts of depression.

The Pediatric Research Center is an effort led by Emory University and Children’s Healthcare of Atlanta, including partnerships with the Georgia Institute of Technology and Morehouse School of Medicine.

Note: Gretchen Neigh in psychiatry/physiology has been doing work with a similar theme, looking at the effects of adolescent social stress in animal models.

Gourley, neuroscience graduate student Andrew Swanson and their colleagues at Yale, where Gourley was a postdoc with Jane Taylor and Tony Koleske, have a new paper in PNAS on this topic. In particular, they dissect how chronic stress – or exposure to the stress hormone corticosterone – can produce loss of motivation and impaired decision making.

First, the researchers found that exposing rodents to cheap oakleys corticosterone shut off a growth factor called BDNF (brain-derived neurotrophic factor) in the frontal cortex, a region of the brain important for planning and goal-directed behavior. BDNF nourishes neurons and helps keep them alive.

To confirm that BDNF was important in this region of the brain, researchers selectively silenced the gene for BDNF only in the frontal cortex. Both mice exposed to stress hormones and the BDNF-altered mice showed reduced motivation to earn food rewards. Mice would ordinarily press a lever dozens of times to get a food pellet, but the BDNF-altered animals would stop trying earlier – the “break point” is 2/3 as high.

“Depression is a leading cause of unemployment because people are unable to break out of self-defeating behavioral patterns and to muster the motivation to engage with the world. If we can better understand how to treat these symptoms, we can effect better outcomes for individuals suffering from depression,” Gourley says. “The BDNF deficiency alone could account for the loss of motivation that individuals with depression suffer.”

However, she reports her team was surprised that the loss of BDNF could not account for another aspect of depression: cyclical self-defeating behavior. They modeled this by asking whether mice continue to press a lever for a food reward even when the reward is no longer available.

“When we made the discovery that reduced BDNF could not account for all of the depression symptoms that we study, we took a step back and looked at the stress response system,” Gourley says.

Stress hormone exposure impairs the ability of mice to switch away from fruitless behaviors, but loss of BDNF in the frontal cortex does not. Here, the stress response system itself was the culprit. When her team temporarily blocked the ability of mice to shut off their stress response systems using the drug mifepristone, mice had impaired decision-making. However, their motivation to obtain rewards was not altered. When the drug wore off, they returned to normal.

Gourley says the implication is that effective antidepressants need to be able to attack not one, but two physiological systems: they need to increase levels of BDNF, and they need to help the stress system recover so that it can shut itself off better. A classic trycyclic antidepressant, amitriptyline, can do both and was effective in treating both the motivation and decision making parts of depression in animal models.

The use of tricyclic antidepressants is limited because of side effects and overdose potential. In addition, another challenge in treating depression is that current antidepressants only begin to work after several weeks or months of treatment. This is thought to be because it takes several weeks for these drugs—which act only indirectly on BDNF—to restore BDNF levels back to normal.

New compounds that act directly on BDNF’s receptor TrkB, such as those identified and tested by Emory researcher Keqiang Ye, could be promising in the development of new approaches to depression, Gourley says.

She and her team also showed that a drug called riluzole, which acts indirectly but rapidly on BDNF systems, has antidepressant effects in the animal models. Riluzole is currently in use to treat ALS, and reportedly has antidepressant effects in humans. Clinical trials with riluzole in the context of depression are underway.

Posted on by Quinn Eastman in Neuro Leave a comment

Playing tetherball with HIV

Raise your hand if you played tetherball in grade school. Paul Spearman and his colleagues have a new paper in the journal Cell Host & Microbe probing a protein called “tetherin” that keeps HIV ensnared within cells it is infecting.

The paper includes electron microscopy images that make it possible to imagine a tiny cord attached to a nascent HIV particle within the cell. In these images, we don’t see the tetherin protein directly. However, we do see gold beads, bound to antibodies against the tetherin protein, which indicate where the protein is. The microscopy was performed at Emory’s Robert P. Apkarian Integrated Electron Microscopy Core.

Tetherin is a so-called “restriction factor,” one of several proteins within the cell that interfere with parts of the viral life

The black dots are antibody-linked gold beads, which indicate where the tetherin is. The larger globules are viral capsids.

cycle. Other restriction factors include enzymes that strip the viral RNA or impede the assembly of the viral capsid. Tetherin also interferes with a variety of other viruses such as Ebola.

Some viral proteins such as HIV’s Vpu or Nef fight back against the action of tetherin. Tracking how this kind of arms race has developed can help scientists follow how HIV evolved from similar retroviruses that infect non-human primates. In addition, knowing how tetherin works could be important in efforts to eradicate potential reservoirs of HIV in infected individuals, and in understanding how the virus is transmitted from person to person.

In their paper, first author Hin Chu and Spearman wanted to determine why infection looks different in two different cell types vulnerable to HIV. In T cells, HIV assembly occurs near the membrane, but in macrophages, HIV assembly occurs in an internal compartment.

“The reason that there is a large, internal collection of HIV particles in macrophages is hotly debated,” Spearman explains. “Some see this as a reservoir of virus that is available to spread to other cells, others would say this is a dead-end compartment. We found that the compartment basically goes away when we deplete tetherin, so tetherin is essential to the existence of the virus-containing compartment.”

Chu and his co-workers examined what happened in macrophages when they used a tool called “RNA interference” to turn off the tetherin gene.

Hin Chu

“We found that cell-cell transmission was enhanced when we depleted tetherin. My interpretation is that when tetherin is upregulated in macrophages, viral particles are rapidly internalized and are not transmitted.”

“Another significant finding is that Vpu doesn’t work well in macrophages. If we can determine why it doesn’t work well in this cell type, it will help us understand how Vpu does work so efficiently in other cells such as T cells. Macrophages are one of the most important cell types infected by HIV, so these questions are likely to be very important in how virus spreads and is maintained in infected individuals.”

Spearman is chief research officer for Children’s Healthcare of Atlanta and director of the Children’s Center for Vaccines and Immunology, within the Emory-Children’s Pediatric Research Center. He is also professor and vice chair of research in pediatrics at Emory. Hin Chu is a graduate student in the Microbiology and Molecular Genetics program.

Posted on by Quinn Eastman in Immunology 1 Comment

Americans cutting sugar – but it’s still not enough

In America’s battle against obesity, there is some good news. According to a study conducted by Emory researchers, Americans consumed nearly a quarter less added sugars in 2008 than they did 10 years earlier.

The study, published in the American Journal of Clinical Nutrition in July 2011, found that the consumption of added sugars, such as those found in sodas, sports drinks, juices and sweetened dairy products, decreased among all age groups over a decade. The largest decrease came in the consumption of sodas, traditionally the largest contributor to added sugar consumption, according to Jean Welsh, MPH, PhD, RN, study author and post-doctoral fellow in pediatric nutrition at Emory University School of Medicine.

“While we were hopeful this would be the case, we were surprised when our research showed such a substantial reduction in the amount of added sugar Americans are consuming,” said Welsh. “We’re hopeful this trend will continue.”

So, why the change? One of Welsh’s partners in the study, Miriam Vos, MD, MSPH, an assistant professor of pediatrics in the Emory University School of Medicine, and a physician on staff at Children’s Healthcare of Atlanta, attributes much of the shift to public education.

“Over the past decade, there has been a lot of public health awareness about obesity and nutrition, and I think people are starting to get the message about sugar,” says Vos. “We’re not trying to send a message that sugar is inherently bad. It’s more that the large amounts of sugar we consume are having negative effects on our health, including increasing our risk of obesity, diabetes and cardiovascular disease.”

The study interpreted data of 40,000 people’s diets collected by the Centers for Disease Control and Prevention (CDC) over 10 years.  From the surveys, researchers were able to calculate how much added sugar – that is sugar that is not originally part of a food – that Americans are consuming. In 1999-2000, the typical person’s daily diet included approximately 100 grams of added sugar, a number that had dropped to 77 grams by 2007 and 2008.

While the study shows that the amount of added sugar Americans are consuming is lower, it doesn’t mean the amount is low enough.

“The American Heart Association recommends that we get about five percent of our calories from added sugars,” says Vos. “In 1999 to 2000, people were consuming about 18 percent of their calories from added sugars. Over 10 years, that amount decreased to 14.5 percent of our daily calories, which is much better. But, clearly, 14.5 percent is still three times more than what is considered a healthy amount. We’re on the right track, but we still have room for improvement.”

Posted on by Kerry Ludlam in Uncategorized Leave a comment

Emory experts weigh in on obesity at AACC Annual Meeting

The obesity epidemic took center stage at this year’s American Association of Clinical Chemistry (AACC) Annual Meeting. Several Emory experts took the podium to further explore obesity not only as a public health problem, but also as an issue that is changing the way we diagnose diseases and treat health issues in children.

Jeffrey Koplan, MD, MPH

Jeffrey Koplan, MD, MPH, director of the Emory Global Health Institute, led one of the meeting’s plenary sessions, emphasizing that obesity must be fought with changes in both public policy and personal decision-making. Koplan also noted that strategies to address obesity must be localized to fit each community because eating and exercise habits are often culturally specific.

Rising rates of obesity also are changing the way physicians and researchers define and diagnose certain diseases, including metabolic syndrome, a cluster of risk factors including insulin resistance, high blood pressure, cholesterol abnormalities and an increased risk for clotting. The common thread among patients with metabolic syndrome is that they are often overweight or obese.

Ross Molinaro, PhD

Pathologist Ross Molinaro, PhD, medical director of the Core Laboratory at Emory University Hospital Midtown and co-director of the Emory Clinical Translational Research Laboratory, presented insights into the important role of lab testing in the definition and diagnosis of metabolic syndrome.  In addition to new markers, Molinaro addressed the global prevalence of metabolic syndrome and the evolving criteria for diagnosis.

Miriam Vos, MD, MSPH

Responding to their members’ demand for more information on how obesity affects children, the AACC hosted a full-day symposium on pediatric obesity and related health complications such as diabetes and high blood pressure.  Miriam Vos, MD, MSPH, assistant professor of pediatrics in  Emory School of Medicine and a physician at Children’s Healthcare of Atlanta described non-alcoholic fatty liver disease as an increasingly common complication of childhood obesity that can cause inflammation and scarring of the liver.

Stephanie Walsh, MD

Stephanie Walsh, MD, assistant professor of pediatrics in Emory School of Medicine and medical director of child wellness at Children’s Healthcare of Atlanta, leads Children’s efforts in preventing and treating childhood obesity in Georgia, which currently has the second highest rate of childhood obesity in the country. Walsh addressed the effect of Children’s wellness initiative, called Strong4Life, on childhood obesity prevention in Georgia.

“From those in the lab, to those in clinic, to those who strategize and implement public health campaigns, we’re all going to need to work together to protect our children’s future,” says Walsh.

Posted on by Kerry Ludlam in Uncategorized Leave a comment

Emory University Hospital Set to Be Launch Site for EPIC

Can it really be possible to transform a person’s own cells into a weapon against various forms of disease? And what if those very cells could be retrained to attack cancer cells or to prevent autoimmune diseases?

Answers to these questions and many more are about to soon be realized, as Emory University Hospital will serve as the launch site for the very appropriately-named EPIC (Emory Personalized Immunotherapy Center).

The new Center, which is the creation of Dr. Jacques Galipeau, MD, professor of hematology and medical oncology & pediatrics of Emory University, will soon be operational after final touches have been put on construction of the lab. This cell processing facility will foster development of novel personalized cellular therapies for Emory patients facing catastrophic ailments and unmet medical needs.

According to Galipeau, the premise of EPIC and its overlying mission will focus on cellular and biological therapies that use a patient’s own cells as a weapon to seek and destroy cells that actually make a person sick. In partnership with the Winship Cancer Institute of Emory University, Children’s Healthcare of Atlanta, Aflac Cancer & Blood Disorders Center and the Emory School of Medicine, EPIC seeks to improve the health of children and adults afflicted with cancer and immune disease.

“First and foremost, we seek to bring a level of care and discovery that is first in Georgia, first in human and first in child. Blood and marrow derived cells have been used for more than a quarter century to treat life threatening hematological conditions and are now established therapies worldwide. More recently, the use of specific adult somatic cells from marrow, blood and other tissues are being studied in cellular medicine of a wide array of ailments including heart, lung, neurological and immune diseases,” says Galipeau. “The use of blood borne immune cells can also be exploited for treatment of cancer, autoimmune disease, organ transplantation and chronic viral illnesses such as HIV.”

Galipeau said that once operational, EPIC will begin by working with Crohn’s disease in pediatric and adult patients, an inflammatory bowel disease. Symptoms of Crohn’s disease include severe abdominal pain, diarrhea, fever, weight loss, and the inability for a child to properly grow. Resulting bouts of inflammation may also affect the entire digestive tract, including the mouth, esophagus and stomach.  In some cases, a radical surgery involving the removal of part of the lower intestinal tract is required.

“There is no current answer for what specifically causes Crohn’s disease, nor is there a cure. But we hope that through our research and efforts, we will be able to first target the inflammatory mechanisms in these patients through immunotherapy, and in turn reduce the amount of flare-ups and limit  the damage that occurs from this disease,” says Galipeau.

Galipeau says the EPIC program could represent a powerful cornerstone to the launch and the development of an entirely new, Emory-based initiative which bundles the strengths of the School of Medicine, Emory University Hospital, Children’s Healthcare of Atlanta, and many Woodruff Health Sciences Center centers of excellence,” says Galipeau.

“My ultimate goal is to elevate the biomedical scientific and scholarly enterprise to a higher level – making a difference in the lives of people. The EPIC program and multi-levels of support could be a fundamental underpinning to our success.”

Posted on by Lance Skelly in Immunology Leave a comment

Emory researchers receive grants to further work in pediatric brain tumor research

Dr. Castellino explains his research on medulloblastomas to participants attending the SBTF’s Grant Award Ceremony.

Two Emory researchers are being recognized by the Southeastern Brain Tumor Foundation (SBTF) for their work in pediatric brain tumor research.

Tracey-Ann Read, PhD, assistant professor in the Department of Neurosurgery, Emory University School of Medicine and director of the Pediatric Neuro-Oncology Laboratory at Emory was awarded a $75,000 grant for her work. She is studying the cell of origin that is responsible for the highly malignant pediatric brain tumor known as an Atypical Teratoid Rhabdoid Tumor (AT/RT). She is also developing a mouse model to study this very lethal brain cancer that occurs in early childhood.

Robert Craig Castellino, MD, assistant professor of pediatrics at Emory and pediatric hematologist/oncologist at Children’s Healthcare of Atlanta at Egleston received $50,000 to support his research efforts. He is studying how the childhood brain cancer, known as medulloblastoma, can metastasize from the brain to other sites in the body, specifically the spine. Medulloblastoma is the most common pediatric malignant brain tumor.

SBTF board members and researchers who were awarded grants pose following the April ceremony.

Read and Castellino received the awards at the SBTF’s Grant Awards Ceremony in April at Emory University Hospital Midtown. Two other researchers from Duke University were also presented with grant money for their contributions in brain tumor research in adults.

Emory neurosurgeon Costas Hadjipanayis, MD, PhD, is the president of the Southeastern Brain Tumor Foundation. He says research, from young investigators such as these, is crucial in the race to find a cure for brain tumors. As federal research funding becomes even more difficult to obtain with cuts in funding, private foundation grants, such as from the SBTF, can permit researchers to start important research projects that can provide preliminary data for bigger grant proposals.

The SBTF awards $200,000-300,000 each year to major medical centers throughout the Southeast in support of cutting-edge brain and spinal tumor research.

 

Posted on by Janet Christenbury in Cancer Leave a comment

Kidney donation kicks off life-saving chain reaction


In this video, players in this extraordinary transplant exchange tell their story.
You can also watch “The Mother of All Swaps,” a news report from 11 Alive Atlanta

When Jon Pomenville of Anderson, SC, decided to donate a kidney altruistically to someone – anyone in need, anywhere in the country – little did he know his selfless sacrifice would in turn change the lives of not one, but numerous individuals and their families, including one little boy from Atlanta.

And little did he know that the selfless, anonymous act would quickly become not so anonymous. During a recent post-surgical clinic visit to Emory University Hospital, Pomenville met by accident – right in the transplant clinic waiting room – many of the individuals whose lives were changed. Soon the patients – recipients and donors – two father and son combinations and Pomenville, the man who would give to anyone – were hugging, shaking hands, and recounting their backgrounds and experiences.

Pomenville and the others, who were all part of what is called a paired kidney exchange, were unwittingly scheduled for appointments within a short period of one another. As one person began recounting the experience, eyes and ears began to focus on the tale being told from across a crowded room.

People involved in the six-person kidney exchange

A chance meeting in a doctors’ waiting room led to a meeting between most of the people involved in the paired kidney exchange.

The Emory Transplant Center created and opened its innovative Paired Donor Kidney Exchange Program in 2009, providing greater hope for patients in need of kidney transplants. According to Kenneth Newell, MD, director of Emory’s living donor program, a paired exchange donation allows healthy individuals to donate a kidney to either a friend, loved one, or even altruistically to a stranger, despite incompatible blood matches. In paired donation, a donor and recipient are matched with another incompatible donor and recipient and the kidneys are exchanged between the pairs.

The procedure is another form of living donor transplantation. Donated kidneys also come from recently deceased donors. While most kidneys from deceased donors function well, studies have shown that a kidney from a living donor, either a blood relative or an unrelated person, provides the greatest chance for long-term success.

“Paired donor exchanges allow us to cast a much wider net to find compatible donors and recipients,” says Newell. “With a paired kidney transplant, one incompatible donor-pair is able to give a healthy kidney to a compatible recipient. In exchange, the second donor-recipient pair will give a compatible kidney to the first donor-recipient pair, making two compatible living donor transplants possible and increasing the potential number of available donor kidneys. This option can help those patients waiting for kidney transplants who have family members or friends willing to be donors and who are medically suitable, but who have an ABO blood type that is incompatible with the recipient’s blood type.”

Because of Pomenville’s donation, a 7-year-old boy named Zion was able to receive a lifesaving kidney from an unrelated donor because his dad, Mike, was able to donate. His surgery took place at Children’s Healthcare of Atlanta at Egleston.

And Gerald Smith of Five Points, Ala., would receive his life-saving kidney because his son, Matt, a recent University of Alabama graduate, would donate his to Zion. And finally, 20 year-old Edward Hill of Macon, a young man with a history of health challenges, would also receive his transplant at Children’s Healthcare of Atlanta – completing the six-person cycle, although the donor of Edward’s kidney is still unknown.

And Zion and Matt Smith will not only share a common bond and connection throughout life in the form of a kidney, but something even sweeter that that … blue Powerade.

“I’ve always really enjoyed drinking Powerade, particularly the blue flavor,” says Smith. Shortly after Zion awoke from his surgery, he inexplicably began requesting the blue-tinted soft drink too.

Other powerful kidney transplant stories out of Emory:

Posted on by Lance Skelly in Uncategorized Leave a comment