Stage fright: don't get over it, get used to it

Many can feel empathy with the situation Banerjee describes: facing “a room full of scientists, who for whatever reason, did not look very happy that Read more

Beyond birthmarks and beta blockers, to cancer prevention

Ahead of this week’s Morningside Center conference on repurposing drugs, we wanted to highlight a recent paper in NPJ Precision Oncology by dermatologist Jack Arbiser. It may represent a new chapter in the story of the beta-blocker propranolol. Several years ago, doctors in France accidentally discovered that propranolol is effective against hemangiomas: bright red birthmarks made of extra blood vessels, which appear in infancy. Hemangiomas often don’t need treatment and regress naturally, but some can lead Read more

Drying up the HIV reservoir

Wnt is one of those funky developmental signaling pathways that gets re-used over and over again, whether it’s in the early embryo, the brain or the Read more

PCP

Reviving drugs with anti-stroke potential, minus side effects

Neuroprotective drugs might seem impractical or improbable right now, after two big clinical trials testing progesterone in traumatic brain injury didn’t work out. But one close observer of drug discovery is predicting a “coming boom in brain medicines.” Maybe this research, which Emory scientists have been pursuing for a long time, will be part of it.

In the 1990s, neuroscientists identified a class of drugs that showed promise in the area of stroke. NMDA receptor antagonists could limit damage to the brain in animal models of stroke. But one problem complicated testing the drugs in a clinical setting: the side effects included disorientation and hallucinations.

Now researchers have found a potential path around this obstacle. The results were published in Neuron.

“We have found neuroprotective compounds that can limit damage to the brain during ischemia associated with stroke and other brain injuries, but have minimal side effects,” says senior author Stephen Traynelis, PhD, professor of pharmacology at Emory University School of Medicine.

“These compounds are most active when the pH is lowered by biochemical processes associated with injury of the surrounding tissue. This is a proof of concept study that shows this mechanism of action could potentially be exploited clinically in several conditions, such as stroke, traumatic brain injury and subarachnoid hemorrhage.” Read more

Posted on by Quinn Eastman in Neuro Leave a comment