Transformative awards for Mocarski's malleable cells, lung fibrosis

The National Institutes of Health has announced a five-year, $1.9 million Transformative Research Award to Emory virologist Edward Mocarski, PhD for his work on how the mechanisms of programmed cell death can be subverted. Mocarski is Robert W. Woodruff professor of microbiology and immunology at Emory University School of Medicine and Emory Vaccine Center. His research, which originated in probing how cells commit suicide when taken over by viruses, could lead to advances in regenerative medicine and organ transplant. The grant, funded through the National Institute of Allergy and Infectious Diseases, is one of nine “high-risk-, high-reward” Transformative Research Awards (13 recipients) announced by the NIH on October 6. In the same group this year, Thomas Barker in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University received a Transformative Research Award for his research on mechanosensors + pulmonary fibrosis. The Transformative Research Award program supports “exceptionally innovative, unconventional, paradigm-shifting research projects that are inherently risky and untested.” Emory has achieved only one other TRA since the program was established in 2009: Shuming Nie's project on imaging to guide cancer surgery. “This Transformative award was made possible because of the creative and engaged graduate students and postdoctoral fellows I have had working with me at Emory,” Mocarski says. In 2011, Mocarski, working with former graduate student William Kaiser and Emory geneticist Tamara Caspary showed that two complementary forms of programmed cell death, necrosis and apoptosis, can be genetically excised from mice, leaving a viable animal with a functioning immune system. These findings are yielding additional fruit. Mocarski’s research indicates that cells from these genetically altered mice are unexpectedly malleable, in that they are easier to reprogram into induced pluripotent stem cells. Once reprogrammed, induced pluripotent stem cells (iPS cells) can be directed to become cells of almost any tissue, making them promising potential tools for the treatment of many diseases. The genetically altered mice are also less susceptible to deadly inflammation and more readily accept bone marrow transplants. The Transformative project’s aims are to exploit these findings and test the ability of drugs that interfere with programmed cell death to facilitate tissue regeneration, iPS cell reprogramming and transplant.      

Cancer metastasis: isolating invasive cells with a color change

At Winship Cancer Institute, Adam Marcus and Jessica Konen have developed a tool for probing how invasive cells are different, which could lead to new ways to fight cancer metastasis. In the video, check out how they track the behavior of apparently devious "leader cells".

Tools for illuminating brain function make their own light

Hey optogenetics fans, cut (or temporarily put aside) the fiber optic cable. Flexible tools allow the choice between activation by light or an external chemical.

Paul Doetsch

Adaptive mutation mechanism may drive some forms of antibiotic resistance

Evolutionary theory says mutations are blind and occur randomly. But in the controversial phenomenon of adaptive mutation, cells can peek under the blindfold, increasing their mutation rate in response to stress.

Scientists at Winship Cancer Institute, Emory University have observed that an apparent “back channel” for genetic information called retromutagenesis can encourage adaptive mutation to take place in bacteria.

The results were published Tuesday, August 25 in PLOS Genetics.

“This mechanism may explain how bacteria develop resistance to some types of antibiotics under selective pressure, as well as how mutations in cancer cells enable their growth or resistance to chemotherapy drugs,” says senior author Paul Doetsch, PhD.

Doetsch is professor of biochemistry, radiation oncology and hematology and medical oncology at Emory University School of Medicine and associate director of basic research at Winship Cancer Institute. The first author of the paper is Genetics and Molecular Biology graduate student Jordan Morreall, PhD, who defended his thesis in April.

Retromutagenesis resolves the puzzle: if cells aren’t growing because they’re under stress, which means their DNA isn’t being copied, how do the new mutants appear?

The answer: a mutation appears in the RNA first. Read more

Posted on by Quinn Eastman in Cancer, Uncategorized Leave a comment

Fine tuning an old-school chemotherapy drug

First approved by the FDA in the 1970s, the chemotherapy drug cisplatin and its relative carboplatin remain mainstays of treatment for lung, head and neck, testicular and ovarian cancer. However, cisplatin’s use is limited by its toxicity to the kidneys, ears and sensory nerves.

Paul Doetsch’s lab at Winship Cancer Institute has made some surprising discoveries about how cisplatin kills cells. By combining cisplatin with drugs that force cells to rely more on mitochondria, it may be possible to target it more specifically to cancer cells and/or reduce its toxicity.

Cisplatin emerged from a serendipitous discovery in the 1960s by a biophysicist examining the effects of electrical current on bacterial cell division. It wasn’t the current that stopped the bacteria from dividing – it was the platinum in the electrodes. According to Siddhartha Mukherjee’s book The Emperor of All Maladies, cisplatin became known as “cisflatten” in the 1970s and 1980s because of its nausea-inducing side effects.

Cisplatin is an old-school chemotherapy drug, in the sense that it’s a DNA-damaging agent with a simple structure. It doesn’t target cancer cells in some special way, it just grabs DNA with its metallic arms and holds on, forming crosslinks between DNA strands.

But how cisplatin kills cells is more complicated. Along with the direct effects of DNA damage, cisplatin unleashes a storm of reactive oxygen species.

“We wanted to know whether the reactive oxygen species induced by cisplatin had a driving role in cell death or was more of a byproduct,” says postdoc Rossella Marullo, who is the first author of a recent paper with Doestch in PLOS One.

One possible analogy: after the 1906 San Francisco earthquake, the fires were even more destructive than the initial shaking. When asked whether to think of the reactive oxygen species production triggered by cisplatin in the same way as the fires, Doetsch and Marullo say they wouldn’t go that far.

Still, they have uncovered a critical role for mitochondria, cells’ mini-power plants, in cisplatin cell toxicity. The researchers found that mitochondria are the source of cisplatin-induced reactive oxygen species in lung cancer cells. Cancer cell lines that lack functional mitochondria* are less sensitive to cisplatin, and cisplatin’s damage to the mitochondria may be even more important than the damage to DNA in the nucleus, the authors write. However, mitochondrial damage is not important for cisplatin’s less potent [but less toxic] cousin carboplatin.

Cancer cells tend to have a warped metabolism that makes them turn off their mitochondria. This is part of the “Warburg effect” (experts in this area: Winship’s Jing Chen and Malathy Shanmugam). Cancer cells have an increased uptake of sugar, but don’t break it down completely, and use the byproducts as building materials.

What if we could force cancer cells to rely on their mitochondria again, and at the same time, by giving them cisplatin, make that painful for them? This would make cisplatin even more toxic to cancer cells in particular.

The drug DCA (dichloroacetate), which can stimulate cancer cells to use their mitochondria, can also increase the toxicity of cisplatin, at least in cancer cell lines in the laboratory, Marullo and her colleagues show.

Doetsch and radiation oncologist Jonathan Beitler are in the process of planning a clinical trial combining DCA with cisplatin for HPV (human papillomavirus)-positive head and neck cancer. The trial would test whether it might be possible to use a lower dose of cisplatin, reducing toxicity, by combining it with DCA.

“We’ve relied on cisplatin’s efficacy for decades, without fully understanding the mechanism,” Beitler says. “With this new knowledge, it may be possible to manipulate cisplatin’s action so it is more effective and less toxic.”

The applicability of cisplatin and mitochondrial tuning may depend both on cancer cell type and metabolic state, Doetsch adds.

*Cell lines that lack mitochondrial DNA can be obtained by “pickling” them in ethidium bromide, a DNA intercalation agent.




Posted on by Quinn Eastman in Cancer Leave a comment

Lab management: leading by example

Paul Doetsch, PhD

Cancer researcher Paul Doetsch is a prominent voice in a recent feature in Science magazine’s Careers section. The article gives scientists who are setting up their laboratories advice on how to manage their laboratories and lead by example.

Doetsch holds a distinguished chair of cancer research and is associate director for basic research at Winship Cancer Institute. His research on how cells handle DNA damage has provided insights into mechanisms of tumor formation and antibiotic resistanceHis lab includes five graduate students, two senior postdocs and one technical specialist.

From the article:

Doetsch says that he tries to maintain a lab culture that provides technicians, students, postdocs, and research faculty a sense of “ownership” of their projects and to give the message everyone is making a significant contribution to the research enterprise, regardless of their specific title or role.
“I make it a point to walk around my lab several times a day to chat with my group and hold individual weekly research meetings with each member to get an update of their progress and provide them with direct, constructive feedback on their activities,” he says. “I always strongly encourage everyone to discuss their results and other issues affecting their project with their lab colleagues and to not hesitate to disagree with me when necessary.”

Author Emma Hitt was herself a graduate student at Emory.

Posted on by Quinn Eastman in Uncategorized Leave a comment
  • Feedback

    Let us know what you think.

    You can contact us via the email button below or you can use our online feedback form You can also leave comments directly on individual posts.

buy windows 8 personalization enabler key cheap,buy windows 8 crack key key online,Windows 8 Activator,cheap Windows 7 Ultimate Activation Key buy Windows 8.1 Product Key Finder 2014 key online,buy windows 8 build 9200 activator free download key online,buy Windows 8 Activator key cheap,buy How to Activate Windows 8 For Free key cheap,cheap Windows 8 Professional Activation Key download buy Keyword key online,buy linux server software key cheap,buy windows crack key online,Windows Server 2012 Standard Activation Key buy windows office 2013 professional cheap,cheap ms office 365,ms office 2010 cheap download,download visio,buy office 2013 package cheap,buy office 2013 package cheap buy download office 2013 with product key cheap,2013 office product key,office 2013 for free download cheap download,ms office pro cheap download,microsoftproject free office trial,buy office 2010 access cheap,office 2013 online download cheap download,ms office professional Windows 8 Professional,buy Windows 7 key cheap,Windows 8 Enterprise Activation Key,buy small business server key cheap,cheap windows 8.1 buy Windows 8.1 loader 2013 key cheap,buy Windows 8.1 Permanent Activator free 2013 key cheap,buy Activate Windows 8 PRO and Enterprise Build 9200 key online,cheap Windows 7 Home Basic Activation Key download,cheap Windows 7 Professional SP1 Activation Key download buy windows server upgrade key cheap,buy windows 8 pro build 9200 product key key cheap,buy Download Kms Activator Windows 8 Build 8400 key online,buy windows 8 personalization working key cheap buy office 2010 home & business cheap,office software free cheap download,download of office 2013,is visio part of office 2013,buy windows office 2007 cheap buy office 365 office 2013 cheap,office download 2010,buy windows office professional cheap,office standard 2010,buy office professional plus 2013 cheap office pro 2013 plus cheap download,buy free download office word cheap,buy office home 2013 cheap,cheap latest ms office 2013 free download cheap free download office word 2013,where can i download office 2013,buy office 2013 trial version free download cheap,cheap outlook 2007 office pro 2013 plus cheap download,buy free download office word cheap,buy office home 2013 cheap,cheap latest ms office 2013 free download buy windows server learning key online,upgrade windows server,buy windows server 2008 requirements key online,data center windows 8 pro crack,cheap windows 8 pro download,Windows 7 activator free Download,buy windows 7 activation crack key cheap,buy windows 2003 servers key online,buy windows 2003 servers key online buy windows server 2008 enterprise key online,cheap Windows 7 Ultimate Activation Key download,windows business server,buy Windows 7 Pro & Enterprise 32 bit and 64 bit activator key cheap,buy windows 10 free activator key cheap skype software free download for windows 7 full version,cheap windows 8.1 pro download,windows 2008 r2,Windows 8 Pro & Enterprise 32 bit and 64 bit Activator,windows 7 home buy windows 8 crack key online,cheap Windows Server 2012 Datacenter Activation Keywindows 7,Windows 8.1 Permanent Activator free 2013 buy windows 8 crack key online,cheap Windows Server 2012 Datacenter Activation Keywindows 7,Windows 8.1 Permanent Activator free 2013 buy new windows version key online,buy windows 7 loader free download key online,windows home server 2011 Windows 7 Enterprise SP1 Activation Key,buy windows 7 certification key cheap,buy windows 8 crack download free key online,buy windows 7 activation key free download key cheap,buy server operating systems key online Windows 8.1 Activator Loader,buy windows server services key online,buy windows 8 activator 2014 key cheap,buy win 7 activator 2014 key online