Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

non-coding RNA

Shape-shifting RNA regulates viral sensor

Congratulations to Emory biochemists Brenda Calderon and Graeme Conn. Their recent Journal of Biological Chemistry paper on a shape-shfting RNA was selected as an Editor’s Pick and cited as a “joy to read… Technically, the work is first class, and the writing is clear.”

Calderon, a former BCDB graduate student and now postdoc, was profiled by JBC in August.

Brenda Calderon, PhD

Calderon and Conn’s JBC paper examines regulation of the enzyme OAS (oligoadenylate synthetase). OAS senses double-stranded RNA: the form that viral genetic material often takes. When activated, OAS makes a messenger molecule that drives internal innate immunity enzymes to degrade the viral material (see below).

OAS is in turn regulated by a non-coding RNA, called nc886. Non-coding means this RNA molecule is not carrying instructions for building a protein. Calderon and Conn show that nc886 takes two different shapes and only one of them activates OAS.

Conn says in a press release prepared by JBC that although nc886 is present in all human cells, it’s unknown how abundance of its two forms might change in response to infection. Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment