Stage fright: don't get over it, get used to it

Many can feel empathy with the situation Banerjee describes: facing “a room full of scientists, who for whatever reason, did not look very happy that Read more

Beyond birthmarks and beta blockers, to cancer prevention

Ahead of this week’s Morningside Center conference on repurposing drugs, we wanted to highlight a recent paper in NPJ Precision Oncology by dermatologist Jack Arbiser. It may represent a new chapter in the story of the beta-blocker propranolol. Several years ago, doctors in France accidentally discovered that propranolol is effective against hemangiomas: bright red birthmarks made of extra blood vessels, which appear in infancy. Hemangiomas often don’t need treatment and regress naturally, but some can lead Read more

Drying up the HIV reservoir

Wnt is one of those funky developmental signaling pathways that gets re-used over and over again, whether it’s in the early embryo, the brain or the Read more

NMDA receptor

GRIN families join together for neuroscience

Editor’s note: This post was a collaboration with MMG graduate student Megan Hockman.

They were brought together by their children’s epilepsies, and by rapid advances in genetic sequencing. Only a few years ago, these families would have been isolated, left to deal with their children’s seizures and neurological problems on their own. Now, they’ve organized themselves and are shaping the future of research.

Agonist binding domains of NMDA receptors, where several disease-causing mutations can be found. Adapted from Swanger et al, AJHG (2016).

In mid-September, parents of children affected by variations in GRIN genes gathered at Emory Conference Center to meet with scientists to discuss current research. GRIN disorders occur because of mutations in genes encoding NMDA receptors, which play key roles in memory, learning and neuronal development. NMDA receptors are a type of receptor for glutamate, the main excitatory neurotransmitter in the brain. The receptors themselves are encoded by multiple genes and assemble into tetramers. When their function is altered by mutations in one of these genes, symptoms appear in infancy or early childhood, usually including epilepsy and developmental delay.

The conference was the first time several patient advocacy groups oriented around GRIN-related disorders had met together, says Denise Rehner, president of the CureGRIN Foundation and mother of an affected child. For parents, this was an opportunity to connect with each other and advocacy groups, and to interact with scientists. For researchers, it was a chance to hear from those who are being impacted by their studies, and to discuss better ways to share data.

“We got a chance to explain to all the stakeholders – patient groups, foundations, companies – exactly what we do,” said Emory neuroscientist and conference organizer Stephen Traynelis, director of the Center for Functional Evaluation of Rare Variants. Traynelis and colleague Hongjie Yuan have been tracking the direct impacts of mutations on the function of the NMDA receptor. In doing so, they plan work with clinicians to compile registries, linking specific functional data to patient symptoms.

In addition to understanding underlying mechanisms and outcomes of GRIN disorders, researchers want to figure out how to treat affected children with existing drugs. Several options exist for targeting NMDA receptors, such as dextromethorphan (a cough suppressant) or memantine, approved for symptoms of Alzheimer’s. Traynelis and Yuan previously collaborated with the Undiagnosed Disease Program (now the Undiagnosed Disease Network) at the National Institutes of Health to investigate memantine as a treatment for a child with a GRIN2A mutation, showing that the drug could reduce seizure burden in one patient. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Nerve gas, angel dust and genetic epilepsy

Last week, Lab Land noticed similarities between two independent lines of research from the Escayg and Traynelis/Yuan labs at Emory. Both were published recently and deal with rare forms of genetic epilepsy, in which molecular understanding of the cause leads to individualized treatment, albeit with limited benefit.

Both conditions are linked to an excess of neuronal excitation, and both can be addressed using medications that have also been tested for Alzheimer’s. A critical difference is that memantine is FDA-approved for Alzheimer’s, but huperzine A is not.

What condition? Dravet syndrome/GEFS+ Epilepsy-aphasia syndrome
What gene is mutated? SCN1A – sodium ion channel GRIN2A – NMDA receptor subunit
What is the beneficial drug? Huperzine A Memantine
How does the drug work? Acetylcholinesterase inhibitor NMDA receptor antagonist
Other drugs that use the same mechanism Alzheimer’s medications such as donepezil

Irreversible + stronger: insecticides, nerve gas

Ketamine, phencyclidine (aka PCP)
Posted on by Quinn Eastman in Neuro Leave a comment

NMDA receptors: triple-quadruple axel

NMDA receptors are saddled with an unwieldy name, but they are some of the most important* signaling molecules in the brain, both for learning and memory and in neurological and psychiatric diseases.

Kasper Hansen, a postdoc from Stephen Traynelis’ lab who is establishing his own at the University of Montana, is lead author on a recent paper in Neuron, which could spur research on NMDA receptors’ pharmacological properties.

The NMDA receptors in the brain are actually mix-and-match assemblies of four subunits, and most of the time in the brain, three different proteins come together to make one receptor, the authors explain. In the laboratory, it has been easier to study simpler, more homogenous, but also more artificial constructs. Hansen and his colleagues developed a way to build replicas of the more complicated NMDA receptors found in the brain and probe their distinct responses to drugs. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Personalized molecular medicine part 3

This is a continuation of previous posts on individualized treatment for infantile-onset epilepsy, made possible by Emory scientists Stephen Traynelis and Hongjie Yuan’s collaboration with the NIH Undiagnosed Diseases Program. A companion paper containing some clinical details was recently published in Annals of Clinical and Translational Neurology.

Memantine, which was found to be effective for this particular child, is normally used to treat symptoms of Alzheimer’s disease. He has a mutation in a gene encoding a NMDA receptor, an important signaling molecule in the brain, which hyperactivates the receptor. Treatment with memantine reduced his seizure frequency from 11 per week to three per week, and eliminated one type of seizure, myoclonic jerks. It allowed doctors to taper off conventional anticonvulsant drugs, which were having little effect anyway. His cognitive ability has remained unchanged.

The team also discovered that the compound dextromethorphan, found in many over-the-counter cough medicines, was effective in the laboratory in counteracting the effects of a GRIN2A mutation found in another patient. However, these effects were mutually exclusive, because the molecular effects of the mutations are different; memantine helps L812M, while dextromethorphan helps N615K.

Yuan and Traynelis report they have an Fake Oakleys ongoing collaboration with UDP investigators to analyze the effects of mutations in NMDA receptor genes. That means more intriguing case reports are coming, they say.

Tyler Pierson, MD, PhD, lead author of the clinical paper who is now at Cedars-Sinai Medical Center in Los Angeles, and David Adams, MD, PhD, senior staff clinician at NIH, provided some additional information on the patient in the study, shown here in a Q + A format. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Personalized molecular medicine part 2

This is a continuation of the post from last week on the early-onset epilepsy patient, whom doctors were able to devise an individualized treatment for. The treatment was based on Emory research on the molecular effects of a mutation in the patient’s GRIN2A gene, discovered through whole exome sequencing.*

For this patient, investigators were able to find the Ray Ban Baratas cause for a previously difficult to diagnose case, and then use a medication usually used for Alzheimer’s disease (memantine) to reduce his seizure frequency.

Last week, I posed the question: how often do we move from a disease-causing mutation to tailored treatment? Read more

Posted on by Quinn Eastman in Cancer, Neuro Leave a comment

True personalized medicine: from mutation to treatment

Stephen Traynelis and Hongjie Yuan

Stephen Traynelis, PhD and Hongjie Yuan, MD, PhD

How often can doctors go from encountering a patient with a mysterious disease, to finding a mutation in a gene that causes that disease, to developing a treatment crafted for that mutation?

This is true personalized molecular medicine, but it’s quite rare.

How rare this is, I’d like to explore more, but first I should explain the basics.

At Emory, Stephen Traynelis and Hongjie Yuan have been working with Tyler Pierson, David Adams, William Gahl, Cornelius Boerkoel and doctors at the National Institutes of Health’s Undiagnosed Diseases Program (UDP) to investigate the effects of mutations in the GRIN2A gene.

Their report on the molecular effects of one such mutation, which caused early-onset epilepsy and intractable seizures in a UDP patient, was recently published in Nature Communications.

With that information in hand, UDP investigators were able to repurpose an Alzheimer’s medication as an anticonvulsant that was effective in reducing seizure frequency in that patient. [The details on that are still unpublished but coming soon.]

Read more

Posted on by Quinn Eastman in Neuro Leave a comment