The time Anna stayed up all night

Almost precisely a decade ago, a young Atlanta lawyer named Anna was returning to work, after being treated for an extraordinary sleep disorder. Her story has been told here at Emory and by national media outlets. Fast forward a decade to Idiopathic Hypersomnia Awareness Week 2018 (September 3-9), organized by Hypersomnolence Australia. What this post deals with is essentially the correction of a date at the tail end of Anna’s story, but one with long-term implications Read more

Mini-monsters of cardiac regeneration

Jinhu Wang’s lab is not producing giant monsters. They are making fish with fluorescent hearts. Lots of cool Read more

Why is it so hard to do good science?

Last week, Lab Land put out a Twitter poll, touching on the cognitive distortions that make it difficult to do high-quality science. Lots of people (almost 50) responded! Thank you! We had to be vague about where all this came from, because it was before the publication of the underlying research paper. Ray Dingledine, in Emory’s Department of Pharmacology, asked us to do the Twitter poll first, to see what answers people would give. Dingledine’s Read more

neuroscience

Optic nerve reaching out

Congratulations to Ying Li, MD, PhD, 3rd place winner of the Best Image contest held as part of the Emory Postdoctoral Research Symposium, which takes place next week (Thursday, May 19). Li is in Eldon Geisert’s lab, and provided Lab Land this description:

“Like a benevolent overseer of the cosmos, the epicenter of the optic nerve appears to extend a axon reassuringly to the small, seemingly lowly single ganglion cell, reminding us that every cell matters.”i-6FBNVsV-X3

Posted on by Quinn Eastman in Neuro Leave a comment

Manipulating motivation in mice

Emory researchers have identified molecular mechanisms that regulate motivation and persistence in mice. Their findings could have implications for intervention in conditions characterized by behavioral inflexibility, such as drug abuse and depression.

Scientists showed that by manipulating a particular growth factor in one region of the brain, they could tune up or down a mouse’s tendency to persist in seeking a reward. In humans, this region of the brain is located just behind the eyes and is called the medial orbitofrontal cortex or mOFC.

“When we make decisions, we often need to gauge the value of a reward before we can see it — for example, will lunch at a certain restaurant be better than lunch at another, or worth the cost,” says Shannon Gourley, PhD, assistant professor of pediatrics and psychiatry at Emory University School of Medicine. “We think the mOFC is important for calculating value, particularly when we have to imagine the reward, as opposed to having it right in front of us.”

The results were published Wednesday in Journal of Neuroscience.

Shannon Gourley, PhD

Being able to appropriately determine the value of a perceived reward is critical in goal-directed decision making, a component of drug-seeking and addiction-related behaviors. While scientists already suspected that the medial orbitofrontal cortex was important for this type of learning and decision-making, the specific genes and growth factors were not as well-understood.

The researchers focused on brain-derived neurotrophic factor (BDNF), a protein that supports the survival and growth of neurons in the brain. BDNF is known to play key roles in long-term potentiation and neuronal remodeling, both important in learning and memory tasks. Variations in the human gene that encodes BDNF have been linked with several psychiatric disorders.

Read more

Posted on by Quinn Eastman in Neuro Leave a comment

From Emory scientist to California policy analyst

Don’t call them alternative careers — since most graduate students in the biomedical sciences won’t end up as professors. Since I found a career outside the laboratory myself, I like to keep an eye out for examples of Emory people who have made a similar jump. [Several more in this Emory Magazine feature, which mentions the BEST program, aimed at facilitating that leap.]

Debra Cooper, PhD

Debra Cooper, PhD

After a postdoc in Texas, former Emory neuroscience graduate student Debra Cooper was awarded a California Council on Science and Technology fellowship to work with the California State Senate staff, and is now a policy consultant there. More about her work can also be found at the CCST blog.

Describe your position as policy consultant now. What types of things do you work on? How does your experience in neuroscience/drug abuse research fit in?

As a policy consultant at the California State Senate Office of Research, I function as a bridge between policy and the technical information that informs public policy. A large component of my time is spent translating research and linking it with relevant policies and regulations. I then synthesize this information and disseminate it to the appropriate audiences through memoranda, reports, or presentations. Sometimes this information is used to advise and make recommendations for legislative ideas.

My main assignments deal with human services (i.e., public services provided by governmental organizations) and veterans affairs. As such, not every project that I work on is directly related to neuroscience, but I often find overlap between my assignments and my academic background. For instance, the intersection of mental health and veterans affairs services is an important topic that bridges my backgrounds. Even when I’m working on issues that don’t directly link to mental health, the years that I spent analyzing research and statistics comes in handy when evaluating relevant documents.

Describe your graduate research at Emory.

I had co-advisors while working on my PhD at Emory – Drs. David Weinshenker and Leonard Howell. My dissertation research focused on one question answered with two different model animals: rats (Weinshenker lab) and squirrel monkeys (Howell lab). I was studying the effectiveness of a drug, nepicastat, in reducing rates of relapse to cocaine abuse. Nepicastat blocks an enzyme (dopamine beta-hydoxylase) which is crucial for converting the neurochemical dopamine into the neurochemical norepinephrine. Both of these neurochemicals are involved in responses to cocaine, and we hypothesized that nepicastat could help in regulating these neurochemicals to prevent relapse. Read more

Posted on by Quinn Eastman in Neuro, Uncategorized Leave a comment

Neurons dominate GDBBS contest-winning images

Lab Land’s editor enjoyed talking with several students about their work at the GDBBS Student Research Symposium last week. Neurons dominate the three contest-winning images. The Integrated Cellular Imaging core facility judged the winners. From left to right:

ContestComposite

1st Place: Stephanie Pollitt, Neuroscience

2nd Place: Amanda York, Biochemistry, Cell and Developmental Biology

3rd Place: Jadiel Wasson, Biochemistry, Cell and Developmental Biology

Larger versions and explanations below.

Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Emory labs on LabTV

This summer, video producers from the web site LabTV came to two laboratories at Emory. We are pleased to highlight the first crop of documentary-style videos.

LabTV features hundreds of young researchers from universities and institutes around the United States, who tell the public about themselves and their research. The videos include childhood photos and explanations from the scientists about what they do and what motivates them. Screen Shot 2015-12-18 at 9.14.51 AM

The two Emory labs are: Malu Tansey’s lab in the Department of Physiology, which studies the intersection of neuroscience and immunology, focusing on neurodegenerative disease, and Mike Davis’ lab in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, which is developing regenerative approaches and technologies for heart disease in adults and children. Read more

Posted on by Quinn Eastman in Heart, Immunology, Neuro Leave a comment

Inflammation linked to weakened reward circuits in depression

About one third of people with depression have high levels of inflammation markers in their blood. New research indicates that persistent inflammation affects the brain in ways that are connected with stubborn symptoms of depression, such as anhedonia, the inability to experience pleasure.

The results were published online on Nov. 10 in Molecular Psychiatry.

The findings bolster the case that the high-inflammation form of depression is distinct, and are guiding researchers’ plans to test treatments tailored for it.

Anhedonia is a core symptom of depression that is particularly difficult to treat, says lead author Jennifer Felger, PhD, assistant professor of psychiatry and behavioral sciences at Emory University School of Medicine and Winship Cancer Institute.

“Some patients taking antidepressants continue to suffer from anhedonia,” Felger says. “Our data suggest that by blocking inflammation or its effects on the brain, we may be able to reverse anhedonia and help depressed individuals who fail to respond to antidepressants.”

In a study of 48 patients with depression, high levels of the inflammatory marker CRP (C-reactive protein) were linked with a “failure to communicate”, seen through brain imaging, between regions of the brain important for motivation and reward.

Emory researchers have found that high inflammation in depression is linked to a "failure to communicate" between two parts of the brain: the ventral striatum (VS, vertical cross section) and the ventromedial prefrontal cortex (vmPFC, horizontal).

Emory researchers have found that high inflammation in depression is linked to a “failure to communicate” between two parts of the brain: the ventral striatum (VS, vertical cross section) and the ventromedial prefrontal cortex (vmPFC, horizontal). Images from Felger et al, Molecular Psychiatry (2015).

Neuroscientists can infer that two regions of the brain talk to each other by watching whether they light up in magnetic resonance imaging at the same times or in the same patterns, even when someone is not doing anything in particular. They describe this as “functional connectivity.”

More here.

Posted on by Quinn Eastman in Neuro Leave a comment

Congratulations to AAAS Mass Media fellows

Two Emory graduate students, Anzar Abbas and Katie Strong, will be spending the summer testing their communication skills as part of the AAAS Mass Media fellowship program. The program is supposed to promote science communication by giving young scientists a taste of what life is like at media organizations around the country. Both of Emory’s fellows have already gained some experience in this realm.

Abbas, a Neuroscience student who recently joined brain imaging number cruncher Shella Keilholz‘s lab, will be at Howard Hughes Medical Institute. He is part of the group that recently revived the Science Writers at Emory publication In Scripto.

Strong, a Chemistry student working with Dennis Liotta on selective NMDA receptor drugs, will be at the Sacramento Bee. She has been quite prolific at the American Journal of Bioethics Neuroscience and its Neuroethics Blog.

(Thanks to Ian Campbell, a previous AAAS Mass Media fellow from Emory who worked at the Oregonian, for notifying me on this!)

Posted on by Quinn Eastman in Neuro, Uncategorized Leave a comment

Dynamic functional connectivity

How can neuroscientists tell that distant parts of the brain are talking to each other?

They can look for a physical connection, like neurons that carry signals between the two. They could probe the brain with electricity. However, to keep the brain intact and examine cheap oakley function in a living person or animal, a less invasive approach may be in order.

Looking for functional connectivity has grown in popularity in recent years. This is a way of analyzing fMRI (functional magnetic resonance imaging) scans, which measure activity in the brain by looking at changes in blood oxygen. If two regions of the brain “light up” at the same time, and do so in a consistent enough pattern, that indicates that those two regions are connected.*

Functional connectivity networks

Shella Keilholz and her colleagues have been looking at functional connectivity data very closely, and how the apparent connections fluctuate over short time periods. This newer form of analysis is called “dynamic” or “time-varying” functional connectivity. Functional connectivity analyses can be performed while the person or animal in the scanner is at rest, not doing anything complicated.

“Even if you’re lying in the scanner daydreaming, your mind is jumping around,” she says. “But the way neuroscientists usually average fMRI data over several minutes means losing lots of information.”

Keilholz is part of the Wallace H Coulter Department of Biomedical Engineering at Georgia Tech and Emory. She participated in a workshop at the most recent Human Brain Mapping meeting in Seattle devoted to the topic. She says neuroscientists have already started using dynamic functional connectivity to detect differences in the brain’s network properties in schizophrenia. However, some of that information may be noise. Skeptical tests have shown that head motion or breathing can push scientists into inferring connections that aren’t really there. For dynamic analysis especially, preprocessing can lead to apparent correlations between two randomly matched signals.

“I got into this field as a skeptic,” she says. “Several years ago, I didn’t believe functional connectivity really reflects coordinated brain activity.”

Now Keilholz and her colleagues have shown for the first time that dynamic functional connectivity data is “grounded”, because it is linked with changes in electrical signals within the brain. The results were published in July in the journal NeuroImage. The first author is graduate student Garth Thompson. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Manipulating neurons with light

Welcome to a feature of Lab Land we hope to have on a regular basis! It’s where we explain a word or phrase that is a hot topic of discussion in the science online world and particularly relevant to research going on at Emory.

Optogenetics allows researchers to stimulate specific brain cells with light. It involves introducing light-sensitive proteins from algae into the brain cells of mice, and then using a fiber optic cable to apply a laser signal to the relevant region of the brain.

Optogenetics is a leap beyond previous genetic engineering techniques that made it possible to turn on (or delete) a gene by feeding a mouse some extraneous chemical, such as the antibiotic tetracycline or the anti-hormone tamoxifen. Instead of wondering how long it takes that chemical to make its way into the brain, scientists can literally flick a switch and see near-instantaneous and localized effects. Read more

Posted on by Quinn Eastman in Neuro Leave a comment