Beyond the amyloid hypothesis: proteins that indicate cognitive stability

If you’re wondering where Alzheimer’s research might be headed after the latest large-scale failure of a clinical trial based on the “amyloid hypothesis,” check this Read more

Mother's milk is OK, even for the in-between babies

“Stop feeding him milk right away – just to be safe” was not what a new mother wanted to hear. The call came several days after Tamara Caspary gave birth to fraternal twins, a boy and a girl. She and husband David Katz were in the period of wonder and panic, both recovering and figuring out how to care for them. “A nurse called to ask how my son was doing,” says Caspary, a developmental Read more

Focus on mitochondria in schizophrenia research

Despite advances in genomics in recent years, schizophrenia remains one of the most complex challenges of both genetics and neuroscience. The chromosomal abnormality 22q11 deletion syndrome, also known as DiGeorge syndrome, offers a way in, since it is one of the strongest genetic risk factors for schizophrenia. Out of dozens of genes within the 22q11 deletion, several encode proteins found in mitochondria. A team of Emory scientists, led by cell biologist Victor Faundez, recently analyzed Read more

Nancy Newman

Mitochondrial blindness — Newman’s Emory story

Neuro-ophthalmologist Nancy Newman’s 2017 Dean’s Distinguished Faculty Lecture and Award were unexpectedly timely. Her talk on Tuesday was a tour of her career and mitochondrial disorders affecting vision, culminating in a description of gene therapy clinical trials for the treatment of Leber’s hereditary optic neuropathy.

The sponsor of those studies, Gensight Biologics, recently presented preliminary data on a previous study of their gene therapy at the American Academy of Neurology meeting in April. Two larger trials (REVERSE and RESCUE) are ongoing.

Despite all the progress, there are still several puzzles connected with mitochondrial diseases affecting vision and particularly Leber’s, the first human disease linked to mitochondrial DNA mutations by Douglas Wallace at Emory in the 1980s.

Newman called Leber’s an “ideal laboratory” for studying mitochondrial diseases of vision, because deterioration of vision in Leber’s tends to happen to one eye first, presenting a window of opportunity to deliver treatment to the other eye. Read more

Posted on by Quinn Eastman in Neuro Leave a comment