Mother's milk is OK, even for the in-between babies

“Stop feeding him milk right away – just to be safe” was not what a new mother wanted to hear. The call came several days after Tamara Caspary gave birth to fraternal twins, a boy and a girl. She and husband David Katz were in the period of wonder and panic, both recovering and figuring out how to care for them. “A nurse called to ask how my son was doing,” says Caspary, a developmental Read more

Focus on mitochondria in schizophrenia research

Despite advances in genomics in recent years, schizophrenia remains one of the most complex challenges of both genetics and neuroscience. The chromosomal abnormality 22q11 deletion syndrome, also known as DiGeorge syndrome, offers a way in, since it is one of the strongest genetic risk factors for schizophrenia. Out of dozens of genes within the 22q11 deletion, several encode proteins found in mitochondria. A team of Emory scientists, led by cell biologist Victor Faundez, recently analyzed Read more

Fetal alcohol cardiac toxicity - in a dish

Alcohol-induced cardiac toxicity is usually studied in animal models; a cell-culture based approach could make it easier to study possible interventions more Read more

molecular beacons

Molecular beacons shine path to cardiac muscle repair

Pure cardiac muscle cells, ready to transplant into a patient affected by heart disease.

That’s a goal for many cardiology researchers working with stem cells. Having a pure population of cardiac muscle cells is essential for avoiding tumor formation after transplantation, but has been technically challenging.

CardioMBs

Fluorescent beacons that distinguish cardiac muscle cells

Researchers at Emory and Georgia Tech have developed a method for Cheap Oakleys purifying cardiac muscle cells from stem cell cultures using molecular beacons.

Molecular beacons are tiny “instruments” that become fluorescent only when they find cells that have turned on certain genes. In this case, they target instructions to make a type of myosin, a protein found in cardiac muscle cells.

Doctors could use purified cardiac muscle cells to heal damaged areas of the heart in patients affected by heart attack and heart failure. In addition, the molecular beacons technique http://www.lependart.com could have broad applications across regenerative medicine, because it could be used with other types of cells produced from stem cell cultures, such as brain cells or insulin-producing islet cells.

The results are published in the journal Circulation.

“Often, we want to generate a particular cell population from stem cells for introduction into patients,” says co-senior author Young-sup Yoon, MD, PhD, professor of medicine (cardiology) and director of stem cell biology at Emory University School of Medicine. “But the desired cells often lack a readily accessible surface marker, or that marker is not specific enough, as is the case for cardiac muscle cells. This technique could allow us to purify almost any type of cell.”

Read more

Posted on by Quinn Eastman in Heart Leave a comment