Triple play in science communication

We are highlighting Emory BCDB graduate student Emma D’Agostino, who is a rare triple play in the realm of science communication. Emma has her own blog, where she talks about what it’s like to have cystic fibrosis. Recent posts have discussed the science of the disease and how she makes complicated treatment decisions together with her doctors. She’s an advisor to the Cystic Fibrosis Foundation on patient safety, communicating research and including the CF community Read more

Deep brain stimulation for narcolepsy: proof of concept in mouse model

Emory neurosurgeon Jon Willie and colleagues recently published a paper on deep brain stimulation in a mouse model of narcolepsy with cataplexy. Nobody has ever tried treating narcolepsy in humans with deep brain stimulation (DBS), and the approach is still at the “proof of concept” stage, Willie says. People with the “classic” type 1 form of narcolepsy have persistent daytime sleepiness and disrupted nighttime sleep, along with cataplexy (a loss of muscle tone in response Read more

In current vaccine research, adjuvants are no secret

Visionary immunologist Charlie Janeway was known for calling adjuvants – vaccine additives that enhance the immune response – a “dirty little secret.” Janeway’s point was that foreign antigens, by themselves, were unable to stimulate the components of the adaptive immune system (T and B cells) without signals from the innate immune system. Adjuvants facilitate that help. By now, adjuvants are hardly a secret, looking at some of the research that has been coming out of Emory Read more

lung cancer

Fine tuning an old-school chemotherapy drug

First approved by the FDA in the 1970s, the chemotherapy drug cisplatin and its relative carboplatin remain mainstays of treatment for lung, head and neck, testicular and ovarian cancer. However, cisplatin’s use is limited by its toxicity to the kidneys, ears and sensory nerves.

Paul Doetsch’s lab at Winship Cancer Institute has made some surprising discoveries about how cisplatin kills cells. By combining cisplatin with drugs that force cells to rely more on mitochondria, it may be possible to target it more specifically to cancer cells and/or reduce its toxicity.

Cisplatin emerged from a serendipitous discovery in the 1960s by a biophysicist examining the effects of electrical current on bacterial cell division. It wasn’t the current that stopped the bacteria from dividing  it was the platinum in the electrodes. According to Siddhartha Mukherjee’s book The Emperor of All Maladies, cisplatin became known as “cisflatten” in the 1970s and 1980s because of its nausea-inducing side effects.

Cisplatin is an old-school chemotherapy drug, in the sense that it’s a DNA-damaging agent with a simple structure. It doesn’t target cancer cells in some special way, it just grabs DNA with its metallic arms and holds on, forming crosslinks between DNA strands.

But how cisplatin kills cells is more complicated. Along with the direct effects of DNA damage, cisplatin unleashes a storm of reactive oxygen species.

“We wanted to know whether the reactive oxygen species induced by cisplatin had a driving role in cell death or was more of a byproduct,” says postdoc Rossella Marullo, who is the first author of a recent paper with Doestch in PLOS One.

One possible analogy: after the 1906 San Francisco earthquake, the fires were even more destructive than the initial shaking. When asked whether to think of the reactive oxygen species production triggered by cisplatin in the same way as the fires, Doetsch and Marullo say they wouldn’t go that far.

Still, they have uncovered a critical role for mitochondria, cells’ mini-power plants, in cisplatin cell toxicity. The researchers found that mitochondria are the source of cisplatin-induced reactive oxygen species in lung cancer cells. Cancer cell lines that lack functional mitochondria* are less sensitive to cisplatin, and cisplatin’s damage to the mitochondria may be even more important than the damage to DNA in the nucleus, the authors write. However, mitochondrial damage is not important for cisplatin’s less potent [but less toxic] cousin carboplatin.

Cancer cells tend to have a warped metabolism that makes them turn off their mitochondria. This is part of the “Warburg effect” (experts in this area: Winship’s Jing Chen and Malathy Shanmugam). Cancer cells have an increased uptake of sugar, but don’t break it down completely, and use the byproducts as building materials.

What if we could force cancer cells to rely on their mitochondria again, and at the same time, by giving them cisplatin, make that painful for them? This would make cisplatin even more toxic to cancer cells in particular.

The drug DCA (dichloroacetate), which can stimulate cancer cells to use their mitochondria, can also increase the toxicity of cisplatin, at least in cancer cell lines in the laboratory, Marullo and her colleagues show.

Doetsch and radiation oncologist Jonathan Beitler are in the process of planning a clinical trial combining DCA with cisplatin for HPV (human papillomavirus)-positive head and neck cancer. The trial would test whether it might be possible to use a lower dose of cisplatin, reducing toxicity, by combining it with DCA.

“We’ve relied on cisplatin’s efficacy for decades, without fully understanding the mechanism,” Beitler says. “With this new knowledge, it may be possible to manipulate cisplatin’s action so it is more effective and less toxic.”

The applicability of cisplatin and mitochondrial tuning may depend both on cancer cell type and metabolic state, Doetsch adds.

*Cell lines that lack mitochondrial DNA can be obtained by “pickling” them in ethidium bromide, a DNA intercalation agent.

 

 

 

Posted on by Quinn Eastman in Cancer Leave a comment

Making “death receptor” anticancer drugs live up to their name

Cancer cells have an array of built-in self-destruct buttons called death receptors. A drug that targets death receptors sounds like a promising concept, and death receptor-targeting drugs have been under development by several biotech companies. Unfortunately, so far results in clinical trials have been disappointing, because cancer cells appear to develop resistance pathways.

Death receptor-targeting drugs under development include: drozitumab, mapatumumab, lexatumumab, AMG655, dulanermin.

Winship Cancer Institute researcher Shi-Yong Sun, PhD and colleagues have a paper in Journal of Biological Chemistry that may help pick the tumors that are most likely to be vulnerable to death receptor-targeting drugs. This could help clinical researchers identify potential successes ahead of time and maximize chances of a good response for patients.

Postdoctoral fellow Youtake Oh is the first author. Winship deputy director Fadlo Khuri, MD and Taofeek Owonikoko, MD, PhD, co-chair of Winship’s clinical and translational research committee, are co-authors. Khuri’s 2010 presentation on death receptor drugs and lung cancer is available here (PDF).

Sun’s team shows that mutations in the cancer-driving genes Ras and B-Raf both induce cancer cells to make more of one of the death receptors (death receptor 5). In addition, they show that cancer cells with mutations in Ras or B-Raf tend to be more vulnerable to drugs that target death receptor 5.

Shi-Yong Sun, PhD

These mutations are known to be more common in some types of cancer. For example, roughly half of melanomas have mutations in B-Raf. Vemurafenib, a drug that inhibits mutated B-Raf, was approved in August 2011 for the treatment of melanoma. K-ras mutations are similarly abundant in lung cancer.

The selection and targeting of tumors via their specific mutations is a growing trend. Sun says lung, colon and pancreatic cancer are all cancer types where Ras and Raf mutations are common enough to become useful biomarkers. In lung cancer, Sun’s team’s results could be especially welcome news because, as a 2009 review concluded:

Recent studies indicate that patients with mutant KRAS tumors fail to benefit from adjuvant chemotherapy, and their disease does not respond to EGFR inhibitors. There is a dire need for therapies specifically for patients with KRAS mutant NSCLC.

 

Posted on by Quinn Eastman in Cancer Leave a comment

What cancer researchers can learn from fruit fly genetics

What can scientists studying cancer biology learn from fruit flies?

Quite a lot, it turns out.  At a time when large projects such as the Cancer Genome Atlas seek to define the changes in DNA that drive cancer formation, it is helpful to have the insight gained from other arenas, such as fruit flies, to make sense of the mountains of data.

Drosophila melanogaster has been an important model organism for genetics because the flies are easy to care for, reproduce rapidly, and have an easily manipulated genome. This NCI newsletter article describes how some investigators have used Drosophila to find genes involved in metastasis.

Emory cell biologist Ken Moberg says that he and postdoctoral fellow Melissa Gilbert crafted a Drosophila-based strategy to identify growth-regulating genes that previous researchers may have missed. Their approach allowed them to begin defining the function of a gene that is often mutated in lung cancer. The results are published online in Developmental Cell.

Part of the developing fly larva, stained with an antibody against Myopic. Groups of cells lacking Myopic, which lack green color, tend to divide more rapidly.

Moberg writes:

Many screens have been carried out in flies looking for single gene lesions that drive tissue overgrowth. But a fundamental lesson from years of cancer research is that many, and perhaps most, cancer-causing mutations also drive compensatory apoptosis, and blocking this apoptosis is absolutely required for cancer outgrowth.

We reasoned that this class of ‘conditional’ growth suppressor genes had been missed in prior screens, so we designed an approach to look for them. The basic pathways of apoptosis are fairly well conserved in flies, so it’s fairly straight forward to do this.

Explanatory note: apoptosis is basically a form of cellular suicide, which can arise when signals within the cell clash; one set of proteins says “grow, grow” and another says “brake, brake,” with deadly results.

Gilbert identified the fruit fly gene Myopic as one of these conditional growth regulators. She used a system where mutations in Myopic drive some of the cells in the fly’s developing eye to grow out more – but only when apoptosis is disabled.

Gilbert showed that Myopic is part of a group of genes in flies, making up the Hippo pathway, which regulates how large a developing organ will become. This pathway was largely defined in flies, then tested in humans, Moberg says. The functions of the genes in this pathway have been maintained so faithfully that in some cases, the human versions can substitute for the fly versions.

Myopic’s ortholog (ie different species, similar sequence and function) is the gene His-domain protein tyrosine phosphatase, or HD-PTP for short. This gene is located on part of the human genome that is deleted in more than 90 percent of both small cell and non-small cell lung cancers, and is also deleted in renal cancer cells.

How HD-PTP, when it is intact, controls the growth of cells in the human lung or kidney is not known. Gilbert and Moberg’s findings suggest that HD-PTP may function through a mechanism that is similar to Myopic’s functions in the fly.

Besides clarifying what Myopic does in the fly, their paper essentially creates a map for scientists studying HD-PTP’s involvement in lung cancer, for example, to probe and validate.

Posted on by Quinn Eastman in Cancer 1 Comment

Detecting Lung Cancer at a Higher Rate

The findings from a recent study show the risk of dying from lung cancer could be reduced by 20 percent by use of a low-dose helical computed tomography (CT) scan.  With 160,000 deaths each year related to cigarette smoking, this type of screening could save up to 32,000 lives each year.

The National Cancer Institute (NCI) launched the multicenter National Lung Screening Trial (NLST) in 2002,  led at Emory by radiologist and researcher Dr. Kay Vydareny.  This trial compared two ways of detecting lung cancer: low-dose helical (spiral) computed tomography (CT) and standard chest X-ray, for their effects on lung cancer death rates in a high-risk population.

Both chest X-rays and helical CT scans have been used as a means to find lung cancer early, but the effects of these screening techniques on lung cancer mortality rates had not been determined. Over a 20-month period, more than 53,000 current or former heavy smokers ages 55 to 74 joined NLST at 33 study sites across the United States. In November 2010, the initial findings from NLST were released. Participants who received low-dose helical CT scans had a 20 percent lower risk of dying from lung cancer than participants who received standard chest X-rays.

Read more

Posted on by admin in Uncategorized Leave a comment

Lung cancer clinical trial shows treatment promise

Advanced non-small cell lung cancer (NSCLC) is a challenging disease to treat. More than 200,000 new cases of lung cancer are diagnosed each year, and 85 percent to 90 percent of diagnosed lung cancers fall into the non-small cell type.

A new strategy for treating NSCLC that increases the effectiveness of standard chemotherapy in patients with advanced stage disease has been found by Emory researchers. Recent advances in treatment result in improvement in patient survival noted for all stages of NSCLC.

Saresh Ramalingam, MD

Saresh Ramalingam, MD

Lead investigator Suresh Ramalingam, MD, associate professor of hematology and medical oncology at Winship Cancer Institute of Emory University, along with a consortium of academic institutions that is supported by the National Cancer Institute, published the positive results in The Journal of Clinical Oncology.

In the clinical trial, Emory scientists added a cancer-fighting compound that is used to treat a specific type of lymphoma to standard lung cancer chemotherapy, resulting in an increase in positive response rates in NSCLC patients.

The addition of vorinostat, a compound that affects the function and activity of DNA and various other proteins, to standard chemotherapy treatment of carboplatin and paclitaxel, increased positive response rates in patients from 12.5 percent to 34 percent in a clinical trial of 94 patients with metastatic non-small cell lung cancer.

Vorinostat may be affecting histones, which are spool-like proteins around which the cell’s DNA is wound. These proteins are important for cell division. We believe these molecular effects could enhance the efficacy of carboplatin and paclitaxel, respectively.

Vorinostat is part of an emerging class of anti-tumor agents that interfere with enzymes known as histone deacetylases (HDAC). Inhibiting these enzymes increases the level of acetylation, a modification of proteins in the cell. Vorinostat is sold by Merck as Zolinza and was approved by the FDA in 2006 to treat cutaneous T cell lymphoma.

Ramalingam says this exciting data will have to be further evaluated in confirmatory phase III studies before they can be adopted in routine use. However, HDAC inhibitors can now be considered among the leading targeted agents under evaluation for the treatment of non-small cell lung cancer.

Posted on by admin in Cancer Leave a comment