Another side to cancer immunotherapy? Emory scientists investigate intratumoral B cells

B cells represent the other major arm of the adaptive immune system, besides T cells, and could offer opportunities for new treatments against some kinds of Read more

Don’t go slippery on me, tRNA

RNA can both carry genetic information and catalyze chemical reactions, but it’s too wobbly to accurately read the genetic code by itself. Enzymatic modifications of transfer RNAs – the adaptors that implement the genetic code by connecting messenger RNA to protein – are important to stiffen and constrain their interactions. Biochemist Christine Dunham’s lab has a recent paper in eLife showing a modification on a proline tRNA prevents the tRNA and mRNA from slipping out Read more

Two birds with one stone: amygdala ablation for PTSD and epilepsy

It’s quite a leap to design neurosurgical ablation of the amygdala to address someone’s PTSD, and it was only considered because of the combination with Read more

LR11

A structure for SorLA/LR11

The importance of the SorLA or LR11 receptor in braking Alzheimer’s was originally defined here at Emory by Jim Lah and Allan Levey’s labs. Japanese researchers recently determined the structure of SorLA and published the results in Nature Structural and Molecular Biology. Their findings point toward a direct role for SorLA in binding toxic circulating beta-amyloid and transporting it to the lysosome for degradation. Hat tip to Alzforum.

Posted on by Quinn Eastman in Neuro Leave a comment

Alzheimer’s drug discovery: looking under the right ROCK

Developing drugs that can change the progression of Alzheimer’s disease is a huge challenge. In the last few years, more than one pharmaceutical firm have abandoned clinical programs in Alzheimer’s that once looked promising. Still, Emory and Scripps scientists have found an approach that deserves a second look and more investigation.

One straightforward drug strategy against Alzheimer’s is to turn down the brain’s production of beta-amyloid, the key component of the disease’s characteristic plaques. A toxic fragment of a protein found in healthy brains, beta-amyloid accumulates in the brains of people affected by the disease.

The enzyme that determines how much beta-amyloid brain cells generate is called BACE (beta-secretase or beta-site APP cleaving enzyme). Yet finding drugs that inhibit that elusive enzyme has been far from straightforward.

Now researchers  have identified a way to shut down production of beta-amyloid by diverting BACE to a different part of the cell and inhibiting its activity. The results were published this week in Journal of Neuroscience. Read more

Posted on by Quinn Eastman in Neuro Leave a comment