Blog editor shift

This is partly a temporary good-bye and partly an introduction to Wayne Drash. Wayne will be filling in for Quinn Eastman, who has been the main editor of Lab Land. Wayne is a capable writer. He spent 24 years at CNN, most recently within its health unit. He won an Emmy with Sanjay Gupta for a documentary about the separation surgery of two boys conjoined at the head. Wayne plans to continue writing about biomedical research at Read more

Some types of intestinal bacteria protect the liver

Certain types of intestinal bacteria can help protect the liver from injuries such as alcohol or acetaminophen overdose. Emory research establishes an important Read more

Can blood from coronavirus survivors save the lives of others?

Donated blood from COVID-19 survivors could be an effective treatment in helping others fight the illness – and should be tested more broadly to see if it can “change the course of this pandemic,” two Emory pathologists say. The idea of using a component of survivors’ donated blood, or “convalescent plasma,” is that antibodies from patients who have recovered can be used in other people to help them defend against coronavirus. Emory pathologists John Roback, MD, Read more

live attenuated

Threading the RSV needle: live attenuated vaccine effective in animals

Crafting a vaccine against RSV (respiratory syncytial virus) has been a minefield for 50 years, but scientists believe they have found the right balance.

A 3-D rendering of a live-attenuated respiratory syncytial virus (RSV) particle, captured in a near-to-native state by cryo-electron tomography. Surface glycoproteins (yellow) are anchored on the viral membrane (cyan), with ribonucleoprotein complexes inside (red). Image courtesy of Zunlong Ke and Elizabeth Wright.

Researchers at Emory University School of Medicine and Children’s Healthcare of Atlanta have engineered a version of RSV that is highly attenuated – weakened in its ability to cause disease – yet potent in its ability to induce protective antibodies.

The researchers examined the engineered virus using cryo-electron microscopy and cryo-electron tomography techniques, and showed that it is structurally very similar to wild type virus. When used as a vaccine, it can protect mice and cotton rats from RSV infection.

The results were published this morning in Nature Communications.

“Our paper shows that it’s possible to attenuate RSV without losing any immunogenicity,” says senior author Martin Moore, PhD, associate professor of pediatrics at Emory University School of Medicine and a Children’s Healthcare of Atlanta Research Scholar. “This is a promising live-attenuated vaccine candidate that merits further investigation clinically.”

The next steps for this vaccine are to produce a clinical grade lot and conduct a phase 1 study of safety and immunogenicity in infants, Moore says. Read more

Posted on by Quinn Eastman in Immunology Leave a comment