Genomics plus human intelligence

The power of gene sequencing to solve puzzles when combined with human Read more

'Master key' microRNA has links to both ASD and schizophrenia

Recent studies of complex brain disorders such as schizophrenia and autism spectrum disorder (ASD) have identified a few "master keys," risk genes that sit at the center of a network of genes important for brain function. Researchers at Emory and the Chinese Academy of Sciences have created mice partially lacking one of those master keys, called MIR-137, and have used them to identify an angle on potential treatments for ASD. The results were published this Read more

Shape-shifting RNA regulates viral sensor

OAS senses double-stranded RNA: the form that viral genetic material often takes. Its regulator is also Read more

Lary Walker

Do Alzheimer’s proteins share properties with prions?

If you’ve come anywhere near Alzheimer’s research, you’ve come across the “amyloid hypothesis” or “amyloid cascade hypothesis.”

This is the proposal that deposition of amyloid-beta, a major protein ingredient of the plaques that accumulate in the brains of Alzheimer’s patients, is a central event in the pathology of the disease. Lots of supporting evidence exists, but several therapies that target beta-amyloid, such as antibodies, have failed in large clinical trials.

Jucker_Walker_May_2014

Lary Walker and Matthias Jucker in Tübingen, 2014

In a recent Nature News article, Boer Deng highlights an emerging idea in the Alzheimer’s field that may partly explain why: not all forms of aggregated amyloid-beta are the same. Moreover, some “strains” of amyloid-beta may resemble spooky prions in their ability to spread within the brain, even if they can’t infect other people (important!).

Prions are the “infectious proteins” behind diseases such as bovine spongiform encephalopathy. They fold into a particular structure, aggregate and then propagate by attracting more proteins into that structure.

Lary Walker at Yerkes National Primate Research Center has been a key proponent of this provocative idea as it applies to Alzheimer’s. To conduct key experiments supporting the prion-like properties of amyloid-beta, Walker has been collaborating with Matthias Jucker in Tübingen, Germany and spent four months there on a sabbatical last year. Their paper, describing how aggregated amyloid-beta is “seeded” and spreads through the brain in mice, was recently published in Brain Pathology.
Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Default daydreaming linked to Alzheimer’s amyloid

Cut the daydreaming, and you can lessen the neurodegenerative burden on your brain? Surprising new research suggests that how we use our brains may influence which parts of the brain are most vulnerable to amyloid-beta (Aβ), which forms plaques in the brain in Alzheimer’s disease.

Lary Walker, PhD, has been investigating why amyloid accumulation seems to lead to Alzheimer's in humans but not non-human primates

In the June issue of Nature Neuroscience, Yerkes National Primate Research Center scientist Lary Walker and Mathias Jucker from the Hertie Institute for Clinical Brain Research in Tübingen, Germany summarize intriguing recent research on regional brain activity and Aβ accumulation.

Neuroscientists have described a set of interconnected brain regions called the “default mode network,” which appear to be activated during activities such as introspection, memory retrieval, daydreaming and imagination. When a person engages in an externally directed task, such as reading, playing a musical instrument, or solving puzzles, activity in the default network decreases.

The Nature Neuroscience paper, from David Holtzman and colleagues at Washington University St. Louis, suggests prolonged metabolic activation of the default-mode network in mice can render that system vulnerable to Aβ by accelerating Aβ deposition and plaque growth.

This line of research turns the “use it or lose it” idea upside-down. Use the default network too much, and the effect may be harmful. Walker and Jucker suggest why education, for example, appears to head off Alzheimer’s in epidemiological studies: by getting the brain involved in non-default/externally directed mode activity.

This idea has additional consequences that can be tested in the clinic. For example, by increasing metabolism in default-mode regions of the brain, prolonged wakefulness caused by sleep disorders might increase Aβ burden.

Walker and Jucker conclude: “Meanwhile, perhaps the best strategy for lessening soluble Aβ in the default mode network may be simply to work diligently, play hard and sleep well.”

 

Posted on by Quinn Eastman in Neuro 2 Comments

Untangling the mysteries of Alzheimer’s disease

Lary Walker, PhD

Consider this: Alzheimer’s is a uniquely human disorder. But why? Why don’t nonhuman primates, such as monkeys, get Alzheimer’s disease. Monkeys form the senile plaques that are identical to the plaques found in humans. So do other animals.

“Yet, despite the fact that nonhuman primates make this protein that we know is very important in the pathogenesis of Alzheimer’s disease, they don’t develop the full disease,” says Lary Walker, PhD. Walker is an associate professor at Yerkes National Primate Research Center.

“They don’t develop the tangles we associate with Alzheimer’s disease, the neuronal loss, the shrinkage of the brain, and they don’t get demented in the sense that humans do,” says Walker.

When our bodies make a protein, the protein tends to fold into a functional form. But when it comes to Alzheimer’s disease, some proteins misfold, becoming sticky and then combining with one another. In their collective form, the proteins can then form plaques or tangles, the two types of lesions associated with Alzheimer’s disease.

And for some unknown reason, people who have plaques usually go on to form tangles. But people who have tangles don’t always go on to form plaques. No one is sure why. But that’s what researcher Walker wants to find out.

To listen to Walker’s own words about Alzheimer’s disease, access Emory’s new Sound Science podcast.

Posted on by Robin Tricoles in Neuro Leave a comment