Precision medicine with multiple myeloma

“Precision medicine” is an anti-cancer treatment strategy in which doctors use genetic or other tests to identify vulnerabilities in an individual’s cancer subtype. Winship Cancer Institute researchers have been figuring out how to apply this strategy to multiple myeloma, with respect to one promising drug called venetoclax, in a way that can benefit the most patients. Known commercially as Venclexta, venetoclax is already FDA-approved for some forms of leukemia and lymphoma. Researchers had observed that multiple Read more

Promiscuous protein droplets regulate immune gene activity

Biochemists at Emory are achieving insights into how an important regulator of the immune system switches its function, based on its orientation and local environment. New research demonstrates that the glucocorticoid receptor (or GR) forms droplets or “condensates” that change form, depending on its available partners. The inside of a cell is like a crowded nightclub or party, with enzymes and other proteins searching out prospective partners. The GR is particularly well-connected and promiscuous, and Read more

Neutrophils flood lungs in severe COVID-19

In the lungs of severe COVID-19 patients, neutrophils camp out and release inflammatory cytokines and tissue-damaging Read more

Kyle Allison

Improve old antibiotics rather than discover new ones, BME researchers propose

The resistance of bacteria to antibiotics is a global challenge that has been exacerbated by the financial burdens of bringing new antibiotics to market and an increase in serious bacterial infections as a result of the COVID-19 pandemic.

Biomedical engineering researchers at Georgia Tech and Emory are tackling the problem of antibiotic resistance not by creating new drugs, but by enhancing the safety and potency of ones that already exist.

Aminoglycosides are antibiotics used to treat serious infections caused by pathogenic bacteria like E. coli or Klebsiella.  Bacteria haven’t developed widespread resistance to aminoglycosides, as compared to other types of antibiotics.  These antibiotics are used sparingly by doctors, in part because of the toxic side effects they can sometimes cause.

In research published in the journal PLOS One, Christopher Rosenberg, Xin Fang and senior author Kyle Allison demonstrated that lower doses of aminoglycosides could be used to treat bacteria when combined with specific metabolic sugars.  Low concentrations of antibiotics alone often cannot eliminate dormant, non-dividing bacterial cells, but the researchers hypothesized based on a past study that combining aminoglycosides with metabolites such as glucose, a simple sugar, or mannitol, a sugar alcohol often used as sweetener, could stimulate antibiotic uptake.

The authors tested these treatment combinations against Gram-negative pathogens E. coli, Salmonella and Klebsiella. The results showed that aminoglycoside-metabolite treatment significantly reduced the concentration of antibiotic needed to kill those pathogens. The authors also demonstrated that this treatment combination did not increase bacterial resistance to aminoglycosides and was effective in treating antibiotic-tolerant biofilms, which are bacterial communities that act as reservoirs of infection.

Read more

Posted on by Quinn Eastman in Uncategorized 1 Comment