Study finds ‘important implications’ to understanding immunity against COVID-19

New research from Emory University indicates that nearly all people hospitalized with COVID-19 develop virus-neutralizing antibodies within six days of testing positive. The findings will be key in helping researchers understand protective immunity against SARS-CoV-2 and in informing vaccine development. The test that Emory researchers developed also could help determine whether convalescent plasma from COVID-19 survivors can provide immunity to others, and which donors' plasma should be used. The antibody test developed by Emory and validated Read more

Emory plays leading role in landmark HIV prevention study of injectable long-acting cabotegravir

Emory University played a key role in a landmark international study evaluating the safety and efficacy of the long-acting, injectable drug, cabotegravir (CAB LA), for HIV prevention. The randomized, controlled, double-blind study found that cabotegravir was 69% more effective (95% CI 41%-84%) in preventing HIV acquisition in men who have sex with men (MSM) and transgender women who have sex with men when compared to the current standard of care, daily oral emtricitabine/tenofovir disoproxil fumarate Read more

Yerkes researchers find Zika infection soon after birth leads to long-term brain problems

Researchers from the Yerkes National Primate Research Center have shown Zika virus infection soon after birth leads to long-term brain and behavior problems, including persistent socioemotional, cognitive and motor deficits, as well as abnormalities in brain structure and function. This study is one of the first to shed light on potential long-term effects of Zika infection after birth. “Researchers have shown the devastating damage Zika virus causes to a fetus, but we had questions about Read more

Jinhu Wang

Mini-monsters of cardiac regeneration

After a heart attack, cardiac muscle cells die because they are deprived of blood and oxygen. In an adult human, those cells represent a dead end. They can’t change their minds about what kind of cell they’ve become.

In newborn babies, as well as in adult fish, the heart can regenerate after injury. Why can’t the human heart be more fishy? At Emory, researcher Jinhu Wang is seeking answers, which could guide the development of regenerative therapies.

“If we want to understand cardiac regeneration in mammals, we can look at it from the viewpoint of the fish,” he says.

A lot of research in regenerative medicine focuses on the potential of stem cells, which have not committed to become one type of tissue, such as brain, skin or muscle. Wang stresses that the ability of zebrafish hearts to regenerate does not originate from stem cells. It comes from the regular tissues. The cells are induced to go back in time and multiply, although their capacity to regenerate may vary with the age of the animal, he says.

Jinhu Wang, PhD manages an impressive set of fish tanks

Zebrafish hearts are simpler than mammals’: theirs have just two chambers, while ours have four. Nobel Prize winner Christiane Nusslein-Vollhard has promoted the use of zebrafish as a genetic model in developmental biology. Its embryos are transparent, making it easy to spot abnormalities.

Wang’s fish room in the basement of Emory’s Rollins Research Center contains more than 1000 fish tanks, with different sizes of cage for various ages and an elaborate water recycling system. The adult fish eat brine shrimp that are stored in vats in one corner of the lab. Read more

Posted on by Quinn Eastman in Heart Leave a comment