'Master key' microRNA has links to both ASD and schizophrenia

Recent studies of complex brain disorders such as schizophrenia and autism spectrum disorder (ASD) have identified a few "master keys," risk genes that sit at the center of a network of genes important for brain function. Researchers at Emory and the Chinese Academy of Sciences have created mice partially lacking one of those master keys, called MIR-137, and have used them to identify an angle on potential treatments for ASD. The results were published this Read more

Shape-shifting RNA regulates viral sensor

OAS senses double-stranded RNA: the form that viral genetic material often takes. Its regulator is also Read more

Mapping shear stress in coronary arteries can help predict heart attacks

Predicting exactly where and when a future seismic fault will rupture is a scientific challenge – in both geology and Read more

JAK2

Blocking glioblastoma escape

Treatment strategies for several types of cancer have been transformed by the discovery of “targeted therapies,” drugs directed specifically against the genetic mutations that drive tumor growth. So far, these strategies have been relatively unsuccessful when it comes to glioblastoma, the most common and most deadly form of brain tumor affecting adults. Glioblastoma was one of the first tumor types to be analyzed in the Cancer Genome Atlas mega-project, but many of the molecular features of glioblastoma have been difficult to exploit.

For example, about 40 percent of glioblastoma tumors ray ban baratas have extra copies of the EGFR (epidermal growth factor receptor) gene. EGFR provides a pedal-to-the-metal growth signal and is known to play a role in driving the growth of lung and colon cancers as well. But drugs targeted against EGFR that have extended patient survival in lung cancer have shown disappointing results with glioblastoma. The reason: the tumor cells can quickly mutate the EGFR gene or switch to reliance on other growth signals.

Keqiang Ye, PhD and colleagues recently described the discovery of a compound that may be valuable in fighting glioblastoma. The Emory researchers devised a scheme to stop tumor cells from using well-known escape routes to avoid EGFR-based drugs. Their results are published in the journal Science Signaling. Postdoctoral fellow Kunyan He, PhD, is the first author.

The compound they identified inhibits the enzyme JAK2, one of the apparent escape Ray Ban outlet routes taken by glioblastoma cells. The compound can pass the blood-brain barrier and inhibit glioblastoma growth while having low toxicity, the researchers report.

Posted on by Quinn Eastman in Cancer 1 Comment