Another side to cancer immunotherapy? Emory scientists investigate intratumoral B cells

B cells represent the other major arm of the adaptive immune system, besides T cells, and could offer opportunities for new treatments against some kinds of Read more

Don’t go slippery on me, tRNA

RNA can both carry genetic information and catalyze chemical reactions, but it’s too wobbly to accurately read the genetic code by itself. Enzymatic modifications of transfer RNAs – the adaptors that implement the genetic code by connecting messenger RNA to protein – are important to stiffen and constrain their interactions. Biochemist Christine Dunham’s lab has a recent paper in eLife showing a modification on a proline tRNA prevents the tRNA and mRNA from slipping out Read more

Two birds with one stone: amygdala ablation for PTSD and epilepsy

It’s quite a leap to design neurosurgical ablation of the amygdala to address someone’s PTSD, and it was only considered because of the combination with Read more

invasion

Targeting metastasis through metabolism

Research from Adam Marcus’ and Mala Shanmugam’s labs was published Tuesday in Nature Communications – months after we wrote an article for Winship Cancer Institute’s magazine about it. So here it is again!

At your last visit to the dentist, you may have been given a mouth rinse with the antiseptic chlorhexidine. Available over the counter, chlorhexidine is also washed over the skin to prepare someone for surgery. Winship researchers are now looking at chlorhexidine and its chemical relative alexidine for another purpose: stopping cancer metastasis.

While the researchers don’t envision using chlorhexidine mouthwash as an anti-cancer measure directly, their findings suggest ways to combine other drugs, already in clinical trials, in ways that could deplete the cells needed for metastasis.

When used as an antiseptic, chlorhexidine is basically a detergent that blasts bacteria apart, scientists think. As leads for potential anti-cancer agents, chlorhexidine and its relatives appear to have a different effect. They interfere with mitochondria, the miniature power plants in our cells. Cancer cells trying to metastasize and invade other tissues seem to need their mitochondria more—especially the cells that are leading the way. Read more

Posted on by Quinn Eastman in Cancer Leave a comment

Invasive cancer cells marked by distinctive mutations

What does it take to be a leader – of cancer cells?

Adam Marcus and colleagues at Winship Cancer Institute are back, with an analysis of mutations that drive metastatic behavior among groups of lung cancer cells. The findings were published this week on the cover of Journal of Cell Science, and suggest pharmacological strategies to intervene against or prevent metastasis.

Marcus and former graduate student Jessica Konen previously developed a technique for selectively labeling “leader” or “follower” lung cancer cells in culture, using lasers that turn a fluorescent protein from green to red. The leaders are more adventurous and invasive, but the followers support the leaders and help them survive. Check out our prize-winning video and their 2017 Nature Communications paper.

The magenta cells have leader-specific mutated Arp3 protein, while the green cells are unmodified followers.

The new research harnesses their technique to track the mutations that are specific to leader or follower cells. It was a collaboration with the lab of Paula Vertino, formerly at Winship and now at University of Rochester. Cancer Biology graduate students Elizabeth Zoeller and Brian Pedro led the work, with sophisticated genomics from Ben Barwick.

One of the leader-specific mutations was in Arp3, part of a protein complex that promotes the protrusion of cellular blobs, facilitating migration. The researchers took the mutated Arp3 protein from leader cells and forced its production in follower cells. In the cover image, the magenta cells on the outside are the ones with the mutated Arp3 protein, while the green cells are unmodified. Read more

Posted on by Quinn Eastman in Cancer Leave a comment

Cancer metastasis: isolating invasive cells with a color change

The capacity of cancer cells to spread throughout the body and metastasize (invade new tissues) makes them deadly. What makes metastatic cells different?

Scientists at Winship Cancer Institute of Emory University have developed a technique for isolating individual cells that display invasive behavior out of a large group in culture by changing their color.

Read more

Posted on by Quinn Eastman in Cancer Leave a comment

Stop the blob!

For your viewing pleasure, we have two videos, courtesy of Winship Cancer Institute’s Adam Marcus. He and his colleagues are investigating whether Withania somnifera, a root used in Indian traditional medicine, could be a source for drugs that inhibit breast cancer invasion and metastasis. Metastasis occurs when cells from a primary tumor migrate to a new location and invade the tissues at the new location.

The first video, the blob that grows, shows MCF10a mammary Ray Ban outlet epithelial cells undergoing epithelial-mesenchymal transition (EMT) in response to TGF-beta. This is a laboratory model for understanding breast cancer invasion and metastasis.

The second shows what happens when the same cells are treated with an extract from Withania somnifera. The blob doesn’t expand in such a threatening way anymore! The results were recently published in PLOS One.

 

Posted on by Quinn Eastman in Cancer Leave a comment