Stage fright: don't get over it, get used to it

Many can feel empathy with the situation Banerjee describes: facing “a room full of scientists, who for whatever reason, did not look very happy that Read more

Beyond birthmarks and beta blockers, to cancer prevention

Ahead of this week’s Morningside Center conference on repurposing drugs, we wanted to highlight a recent paper in NPJ Precision Oncology by dermatologist Jack Arbiser. It may represent a new chapter in the story of the beta-blocker propranolol. Several years ago, doctors in France accidentally discovered that propranolol is effective against hemangiomas: bright red birthmarks made of extra blood vessels, which appear in infancy. Hemangiomas often don’t need treatment and regress naturally, but some can lead Read more

Drying up the HIV reservoir

Wnt is one of those funky developmental signaling pathways that gets re-used over and over again, whether it’s in the early embryo, the brain or the Read more

invasion

Invasive cancer cells marked by distinctive mutations

What does it take to be a leader – of cancer cells?

Adam Marcus and colleagues at Winship Cancer Institute are back, with an analysis of mutations that drive metastatic behavior among groups of lung cancer cells. The findings were published this week on the cover of Journal of Cell Science, and suggest pharmacological strategies to intervene against or prevent metastasis.

Marcus and former graduate student Jessica Konen previously developed a technique for selectively labeling “leader” or “follower” lung cancer cells in culture, using lasers that turn a fluorescent protein from green to red. The leaders are more adventurous and invasive, but the followers support the leaders and help them survive. Check out our prize-winning video and their 2017 Nature Communications paper.

The magenta cells have leader-specific mutated Arp3 protein, while the green cells are unmodified followers.

The new research harnesses their technique to track the mutations that are specific to leader or follower cells. It was a collaboration with the lab of Paula Vertino, formerly at Winship and now at University of Rochester. Cancer Biology graduate students Elizabeth Zoeller and Brian Pedro led the work, with sophisticated genomics from Ben Barwick.

One of the leader-specific mutations was in Arp3, part of a protein complex that promotes the protrusion of cellular blobs, facilitating migration. The researchers took the mutated Arp3 protein from leader cells and forced its production in follower cells. In the cover image, the magenta cells on the outside are the ones with the mutated Arp3 protein, while the green cells are unmodified. Read more

Posted on by Quinn Eastman in Cancer Leave a comment

Cancer metastasis: isolating invasive cells with a color change

The capacity of cancer cells to spread throughout the body and metastasize (invade new tissues) makes them deadly. What makes metastatic cells different?

Scientists at Winship Cancer Institute of Emory University have developed a technique for isolating individual cells that display invasive behavior out of a large group in culture by changing their color.

Read more

Posted on by Quinn Eastman in Cancer Leave a comment

Stop the blob!

For your viewing pleasure, we have two videos, courtesy of Winship Cancer Institute’s Adam Marcus. He and his colleagues are investigating whether Withania somnifera, a root used in Indian traditional medicine, could be a source for drugs that inhibit breast cancer invasion and metastasis. Metastasis occurs when cells from a primary tumor migrate to a new location and invade the tissues at the new location.

The first video, the blob that grows, shows MCF10a mammary Ray Ban outlet epithelial cells undergoing epithelial-mesenchymal transition (EMT) in response to TGF-beta. This is a laboratory model for understanding breast cancer invasion and metastasis.

The second shows what happens when the same cells are treated with an extract from Withania somnifera. The blob doesn’t expand in such a threatening way anymore! The results were recently published in PLOS One.

 

Posted on by Quinn Eastman in Cancer Leave a comment