A new term in biophysics: force/time = "yank"

A group of scientists have proposed to define change in force over time as Read more

Are immune-experienced mice better for sepsis research?

The goal is to make mouse immune systems and microbiomes more complex and more like those in humans, so the mice they can better model the deadly derangement of Read more

One more gene between us and bird flu

We’re always in favor of stopping a massive viral pandemic, or at least knowing more about what might make one Read more

immune rejection

Sensitive to (transplant) rejection

An experimental screening method, developed by Emory and Georgia Tech scientists, aims to detect immune rejection of a transplanted organ earlier and without a biopsy needle.

The technology is based on nanoparticles that detect granzyme B enzymes produced by killer T cells. When the T cells are active, they slice up the nanoparticles, generating a fluorescent signal that is detectable in urine. The results from a mouse skin graft model were published in Nature Biomedical Engineering, from Gabe Kwong’s lab at GT and Andrew Adams’ at Emory. More extensive story here.

Co-first authors Quoc Mac and Dave Mathews

Adams is also developing technologies for imaging transplant rejection via immunoPET, with Georgia Tech’s Phil Santangelo.

 

Posted on by Quinn Eastman in Immunology Leave a comment