Bird flu shuffle probes viral compatibility

The good news is that packaging signals on the H5 and H7 viral RNA genomes are often incompatible with the H3N2 viruses. But mix and match still occurred at a low level, particularly with Read more

A life consumed by sleep

Nothing he tried had worked. For Sigurjon Jakobsson, the trip to Atlanta with his family was a last-ditch effort to wake up. He had struggled with sleeping excessively for several years before coming from Iceland to see a visionary neurologist, who might have answers. In high school, Sigurjon was a decathlete competing as part of Iceland’s national sports team. But at the age of 16, an increasing need for sleep began to encroach upon his life. Read more

Laughter may be best medicine for brain surgery

Emory neurosurgeons see the technique as a “potentially transformative” way to calm some patients during awake brain surgery, even those who are not especially Read more

homeostatic intrinsic plasticity

Probing hyperexcitability in fragile X syndrome

Researchers at Emory University School of Medicine have gained insight into a feature of fragile X syndrome, which is also seen in other neurological and neurodevelopmental disorders.

In a mouse model of fragile X syndrome, homeostatic mechanisms that would normally help brain cells adjust to developmental changes don’t work properly. This helps explain why cortical hyperexcitability, which is linked to sensory sensitivity and seizure susceptibility, gradually appears during brain development.

Studying a model of fragile X syndrome, Emory researchers were looking at neurons displaying single spiking and multi-spiking behavior. 

These physiological insights could help guide clinical research and efforts at early intervention, the scientists say. The results were published Feb. 5 by Cell Reports (open access).

Fragile X syndrome is the most common inherited form of intellectual disability and a leading single-gene cause of autism. Individuals with fragile X syndrome often display sensory sensitivity and some — about 15 percent— have seizures.

Scientists’ explanation for these phenomena is cortical hyperexcitability, meaning that the response of the cortex (the outer part of the brain) to sensory input is more than typical. Cortical hyperexcitability has also been observed in the broader category of autism spectrum disorder, as well as migraine or after a stroke.

At Emory, graduate student Pernille Bülow forged a collaboration between Peter Wenner, PhD and Gary Bassell, PhD. Wenner, interested in homeostatic plasticity, and Bassell, an expert in fragile X neurobiology, wanted to investigate why a mechanism called homeostatic intrinsic plasticity does not compensate for the changes in the brain brought about in fragile X syndrome. More here.

Posted on by Quinn Eastman in Neuro Leave a comment