A new term in biophysics: force/time = "yank"

A group of scientists have proposed to define change in force over time as Read more

Are immune-experienced mice better for sepsis research?

The goal is to make mouse immune systems and microbiomes more complex and more like those in humans, so the mice they can better model the deadly derangement of Read more

One more gene between us and bird flu

We’re always in favor of stopping a massive viral pandemic, or at least knowing more about what might make one Read more

hemoglobin

Emory basic research highlights for #AHA16

Basic research presentations at 2016 American Heart Association Scientific Sessions: cell therapy for heart attack (mesenchymal stem cells) in animal models and role of CD73, gradual release drug for atrial fibrillation, how particles from stored blood affects blood vessels.

Mesenchymal Stem Cells Require CD73 Activity to Reduce Leukocyte Associated Inflammation Following Myocardial Ischemia-Reperfusion Injury

Nov.13, 1:30 pm, Science and Technology Hall- Basic Science Theater

Cell therapy, using the patient’s own cells to reduce damage to the heart after a heart attack, has been a hot topic. Mesenchymal stem cells are derived from the bone marrow and can’t replace heart muscle. But they do exert anti-inflammatory and anti-oxidative effects, Eric Shin, MD, Rebecca Levit, MD and colleagues show in a rat model of heart attack.

The researchers use the gel material alginate to encapsulate the cells, in a way previously described by Levit. They say this is the first study to demonstrate that mesenchymal stem cells reduce reactive oxygen species production in the heart. and that the molecule CD73, which degrades ATP/ADP into adenosine, is needed for the anti-inflammatory effect. CD73 is also a cancer immunotherapy target. Read more

Posted on by Quinn Eastman in Heart Leave a comment