Fermentation byproduct suppresses seizures in nerve agent poisoning

A compound found in trace amounts in alcoholic beverages is more effective at combating seizures in rats exposed to an organophosphate nerve agent than the current recommended treatment, according to new research published Read more

Post-anesthetic inertia in IH

A recent paper from neurologists Lynn Marie Trotti and Donald Bliwise, with anesthesiologist Paul Garcia, substantiates a phenomenon discussed anecdotally in the idiopathic hypersomnia (IH) community. Let’s call it “post-anesthetic inertia.” People with IH say that undergoing general anesthesia made their sleepiness or disrupted sleep-wake cycles worse, sometimes for days or weeks. This finding is intriguing because it points toward a trigger mechanism for IH. And it pushes anesthesiologists to take IH diagnoses into Read more

How much does idiopathic hypersomnia overlap with ME/CFS?

If hypersomnia and narcolepsy are represented by apples and oranges, how does ME/CFS fit Read more

Hee Cheol Cho

#AHA17 highlight: cardiac pacemaker cells

At the American Heart Association Scientific Sessions meeting this week, Hee Cheol Cho’s lab is presenting three abstracts on pacemaker cells. These cells make up the sinoatrial node, which generates electrical impulses driving our heart beats. Knowing how to engineer them could enhance cardiologists’ ability to treat arrhythmias, especially in pediatric patients, but that goal is still some distance away.

Just a glimpse of the challenge comes from graduate student Sandra Grijalva’s late breaking oral abstract describing “Induced Pacemaker Spheroids as a Model to Reverse-Engineer the Native Sinoatrial Node”, which was presented yesterday.

Cho has previously published how induced pacemaker cells can be created by introducing the TBX18 gene into rat cardiac muscle cells. In the new research, when a spheroid of induced pacemaker cells was surrounded by a layer of cardiac muscle cells, the IPM cells were able to drive the previously quiescent nearby cells at around 145 beats per minute. [For reference, rats’ hearts beat in living animals at around 300 beats per minute.] Read more

Posted on by Quinn Eastman in Heart Leave a comment

Stem cell/cardiology researcher Hee Cheol Cho joins Emory

Please welcome stem cell/cardiology researcher Hee Cheol Cho to Emory. Starting in September, Cho joined the Wallace H Counter Department of Biomedical Engineering at Georgia Tech and Emory, and Emory-Children’s Pediatric Research Center. He and his team will focus on developing gene-and cell-based therapies for cardiac arrhythmias. Their research will adding to and complement the research of several groups, such as those led by Chunhui Xu, Young-sup Yoon, Mike Davis and W. Robert Taylor.

Cho comes from Cedars-Sinai Medical Center in Los Angeles, where he specialized in understanding cardiac pacemaker cells, a small group of muscle cells in the sinoatrial node of the heart that initiate cardiac contraction. These cells have specialized electrophysiological properties, and much has been learned in the last few years about the genes that control their development.

Cho and colleagues from Cedars-Sinai recently published a paper in Stem Cell Reports describing how the gene SHOX2 can nudge embryonic stem cells into becoming cardiac pacemaker cells. Read more

Posted on by Quinn Eastman in Heart Leave a comment