Anti-inflammatory approach suppresses cancer metastasis in animal models

An anti-inflammatory drug called ketorolac, given before surgery, can promote long-term survival in animal models of cancer metastasis, a team of scientists has found. The research suggests that flanking chemotherapy with ketorolac or similar drugs -- an approach that is distinct from previous anti-inflammatory cancer prevention efforts -- can unleash anti-tumor immunity. The findings, published in Journal of Clinical Investigation, also provide a mechanistic explanation for the anti-metastatic effects of ketorolac, previously observed in human Read more

I3 Venture awards info

Emory is full of fledgling biomedical proto-companies. Some of them are actual corporations with employees, while others are ideas that need a push to get them to that point. Along with the companies highlighted by the Emory Biotech Consulting Club, Dean Sukhatme’s recent announcement of five I3 Venture research awards gives more examples of early stage research projects with commercial potential. This is the third round of the I3 awards; the first two were Wow! Read more

Take heart, Goldilocks -- and get more sleep

Sleeping too little or too much increases the risk of cardiovascular events and death in those with coronary artery disease, according to a new paper from Emory Clinical Cardiovascular Research Institute. Others have observed a similar U-shaped risk curve in the general population, with respect to sleep duration. The new study, published in American Journal of Cardiology, extends the finding to people who were being evaluated for coronary artery disease. Arshed Quyyumi, MD and colleagues analyzed Read more

HDAC4

How estrogen modulates fear learning — molecular insight into PTSD in women

Low estrogen levels may make women more susceptible to the development of post-traumatic stress disorder (PTSD) at some points in their menstrual cycles or lifetimes, while high estrogen levels may be protective.

New research from Emory University School of Medicine and Harvard Medical School provides insight into how estrogen changes gene activity in the brain to achieve its protective effects.

The findings, published in Molecular Psychiatry, could inform the design of preventive treatments aimed at reducing the risk of PTSD after someone is traumatized.

The scientists examined blood samples from 278 women from the Grady Trauma Project, a study of low-income Atlanta residents with high levels of exposure to violence and abuse. They analyzed maps of DNA methylation, a modification to the shape of DNA that is usually a sign of genes that are turned off.

The group included adult women of child-bearing age, in which estrogen rises and falls with the menstrual cycle, and women that had gone through menopause and had much lower estrogen levels.

“We knew that estrogen affects the activity of many genes throughout the genome,” says Alicia Smith, PhD, associate professor and vice chair of research in the Department of Gynecology and Obstetrics at Emory University School of Medicine. “But if you look at the estrogen-modulated sites that are also associated with PTSD, just one pops out.”

That site is located in a gene called HDAC4, known to be critical for learning and memory in mice. Genetic variation in HDAC4 among the women was linked to a lower level of HDAC4 gene activity and differences in their ability to respond to and recover from fear, and also differences in “resting state” brain imaging. Women with the same variation also showed stronger connections in activation between the amygdala and the cingulate cortex, two regions of the brain involved in fear learning. Read more

Posted on by Quinn Eastman in Neuro Leave a comment