Mysterious DNA modification important in fly brain

Drosophila, despite being a useful genetic model of development, have very little DNA methylation on C. What they do have is methylation on A (technically, N6-methyladenine), although little was known about what this modification did for Read more

Where it hurts matters in the gut

What part of the intestine is problematic matters more than inflammatory bowel disease subtype (Crohn’s vs ulcerative colitis), when it comes to genetic activity signatures in pediatric Read more

Overcoming cisplatin resistance

Cisplatin was known to damage DNA and to unleash reactive oxygen species, but the interaction between cisplatin and Mek1/cRaf had not been observed Read more

graduate school

Biomedical career fair April 13

We learned about this from Tami Hutto at BEST (Broadening Experiences in Scientific Training) and Maria Thacker Goethe at Georgia Bio . We will provide more information when it is available. Friday, April 13. Emory Conference Center + Hotel, 1615 Clifton.

Posted on by Quinn Eastman in Uncategorized Leave a comment

The challenges of graduate school

Biochemist Paul Doetsch’s recent appearance in a Science magazine feature on laboratory leadership led to a conversation with him about the challenges of graduate school.

He emphasized that scientific research is a team sport, and brilliance on the part of the lab head may not yield fruit without a productive relationship with the people in the lab. Doetsch suggested talking with Lydia Morris, a graduate student in the Genetics and Molecular Biology graduate program. Morris has been working in Doetsch’s lab for several years and is about to complete her degree. She has been examining the in vivo distribution of DNA repair proteins.

In this video, Morris and Doetsch talk about the differences between turn-the-crank and blue-sky projects, and the importance of backup projects, communications, high expectations and perseverance.

Posted on by Quinn Eastman in Cancer Leave a comment

Indispensable cilia

Cilia are tiny hair-like structures on the outside of cells. Your memory of cilia may extend back to biology class, when you saw a picture of a paramecium or lung tissues, where cilia keep surfaces free of dirt and mucus.

Ciliated cells in the human oviduct

In the last few years, scientists have been learning more about cilia’s many roles in the body. Nearly all mammalian cells have cilia, and they are thought to act more like antennae, sending and receiving signals. Defects in cilia have been connected to lung, heart, kidney and eye diseases. Accordingly, Emory’s 15th BCMB training grant symposium focuses on cilia, beginning Thursday evening with a keynote talk by Susan Dutcher from Washington University, St. Louis and extending all day Friday.

At Emory, cell biologist Winfield Sale’s laboratory uses the model system of the alga Chlamydomonas to study dynein, a molecular motor that drives the functions of cilia. In addition, geneticist Tamara Caspary’s laboratory is studying how defects in cilia can lead to altered embryonic development. Ping Chen’s group has been examining cilia in the context of inner ear development.

This week’s program is sponsored by Emory’s graduate program in Biochemistry, Cell and Developmental Biology, the Departments of Cell Biology, Biochemistry, Pharmacology, Biology, Microbiology and Immunology, Physics, the Graduate Division of Biological and Biomedical Sciences and the Woodruff Health Sciences Center.

Posted on by Quinn Eastman in Uncategorized Leave a comment