Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

Reddit as window into opioid withdrawal strategies

Drug abuse researchers are using the social media site Reddit as a window into the experiences of people living with opioid addiction. Abeed Sarker in Emory's Department of Biomedical Informatics has a paper in Clinical Toxicology focusing on the phenomenon of “precipitated withdrawal,” in collaboration with emergency medicine specialists from Penn, Rutgers and Mt Sinai. Precipitated withdrawal is a more intense form of withdrawal that can occur when someone who was using opioids starts medication-assisted treatment Read more

CROI: HIV cure report and ongoing research

The big news out of CROI (Conference on Retroviruses and Opportunistic Infections) was a report of a third person being cured of HIV infection, this time using umbilical cord blood for a hematopoetic stem cell transplant. Emory’s Carlos del Rio gave a nice overview of the achievement for NPR this morning. As del Rio explains, the field of HIV cure research took off over the last decade after Timothy Brown, known as “the Berlin patient,” Read more

Georgia Tech

Personalized Medicine Day in Georgia

Governor Nathan Deal was joined by Ambassador Andrew Young, Georgia State Representative Calvin Smyre and Leroy Hood, founder of the Institute of Systems Biology, in formally proclaiming September 1, 2011 Personalized Medicine Awareness Day in the State of Georgia.

Georgia Governor Nathan Deal presents Morehouse School of Medicine’s Dean and Executive Vice President, Valerie Montgomery Rice, MD, with a state proclamation declaring Sept. 1, 2011 Personalized Medicine Awareness Day in Georgia.

The event at Morehouse School of Medicine (MSM) was sponsored by Georgia Bio; the Atlanta Clinical & Translational Science Institute (ACTSI, which is funded by the NIH and led by Emory University with partners MSM and Georgia Tech); and Iverson Genetics, Inc.

“The collaboration within the ACTSI between these three research universities is an important undertaking and an example of how it should be done,” remarked Governor Deal as he kicked off the day’s program.

A visionary in the personalized medicine field, Dr. Hood developed the DNA gene sequencer and synthesizer and the protein synthesizer and sequencer – four instruments that paved the way for the successful mapping of the human genome.

During his keynote address he proposed a revolution in medicine.  P4 Medicine – Predictive, Preventive, Personalized and Participatory – is a proactive (instead of a reactive) approach to medicine. The paradigm change will drive radical changes in science.

For P4 medicine to succeed, a cross-disciplinary culture with team science and new approaches to educating scientists, as is done through the ACTSI, has to take place. Dr. Hood predicts the human genome will be part of individual medical records in 10 years.

Leroy Hood, MD, PhD

“The vision of P4 medicine is that each patient will be surrounded by a virtual cloud of billions of data points. Advances in science and technology will reduce this enormous data dimensionality to simple hypotheses about human health and disease,” says Hood.

“The ultimate outcome is to create individualized patient disease models that are predictive and actionable. The shift to P4 Medicine will also require societal changes.”

Personalized Medicine Awareness Day celebrated the first-of-its-kind personalized medicine study, approved by the Centers for Medicare and Medicaid Services. The study will determine the utility of genetic testing in calculating doses and reducing the incidence of adverse events associated with the initiation of Warfarin therapy. Warfarin is the world’s leading anti-blood clotting drug.

Researchers hope the study will provide data to demonstrate that individualizing treatment can improve patient safety and reduce healthcare costs, says Dean Sproles, CEO of Iverson Genetics, Inc., which is collaborating in the study with MSM and the ACTSI.

Governor Deal congratulated the ACTSI for leading the landmark Warfarin study with Iverson and is “proud that Georgia will be leading the effort.”

The Warfarin Study is led by ACTSI Senior Co-Principal Investigator Elizabeth Ofili, MD, MPH, director of the Clinical Research Center, chief of cardiology and associate dean for clinical research at MSM, and will engage 50 sites across the country and 7,000 participants. The first participant was recently enrolled at Grady Memorial Hospital.

“This study should help us understand how to use each patient’s genetic information to deliver a safer and more effective dose,” says Ofili.

Sproles noted, “The study is evidence of the growing role of genetics in helping doctors to develop optimal individual treatments for their patients.”

A panel including Emory medical leaders David Stephens, Fred Sanfilippo and Kenneth Brigham discussed and addressed questions like how to communicate ‘big science’ to the individual, how to move genetic testing to medical outcomes and who owns genome data.

“Personalized Medicine is the future,” stated Governor Deal. The presence of Governor Deal, Ambassador Young and Representative Smyre is a sign that policymakers are beginning to recognize that personalized medicine is not just a vision for better healthcare; it has the power to improve health and reduce healthcare costs.

Posted on by admin in Uncategorized 1 Comment

Brain enhancement: can and should we do it?

The Emory Center for Ethics and Emory’s Neuroscience Graduate Program recently co-hosted a symposium discussing the ethics of brain-enhancing technologies, both electronic and pharmacological.

Georgia Tech biomedical engineer Steve Potter explained his work harnessing the behavior of neurons grown on a grid of electrodes. The neurons, isolated from rats, produce bursts of electrical signals in various patterns, which can be “tuned” by the inputs they receive.

“The cells want to form circuits and wire themselves up,” he said.

As for future opportunities, he cited the technique of deep brain stimulation as well as clinical trials in progress, including one testing technology developed by the company Neuropace that monitors the brain’s electrical activity for the purpose of suppressing epileptic seizures. Similar technology is being developed to help control prosthetic limbs and could also promote recovery from brain injury or stroke, he said. Eventually, electrical stimulation that is not modulated according to feedback from the brain will be seen as an overly blunt instrument, even “barbaric,” he said.

Mike Kuhar, a neuroscientist at Yerkes National Primate Research Center, introduced the topic of cognitive enhancers or “smart drugs.” He described one particular class of proposed cognitive enhancers, called ampakines, which appear to improve functioning on certain tasks without stimulating signals throughout the brain. Kuhar questioned whether “smart drugs” pose unique challenges, compared to other types of drugs. From a pharmacology perspective, he said there is less distinction between therapy and enhancement, compared to a perspective imposed by regulators or insurance companies. He described three basic concerns: safety (avoiding toxicity or unacceptable side effects), freedom (lack of coercion from governments or employers) and fairness.

“Every drug has side effects,” he said. “There has to be a balance between the benefits versus the risks, and regulation plays an important role in that.”

He identified antidepressants and treatments for attention deficit-hyperactivity disorder or the symptoms of Alzheimer’s disease as already raising similar issues. The FDA has designated mild cognitive impairment associated with aging as an open area for pharmaceutical development, he noted.

James Hughes, a sociologist from Trinity College and executive director of the Institute for Ethics and Emerging Technologies, welcomed new technologies that he said could not only treat disease, but also enhance human capabilities and address social challenges such as criminal rehabilitation. However, he did identify potential “Ulysses problems”, where users of new technologies would need to exercise control and judgment.

In contrast, historian and Judaic scholar Hava Tirosh-Samuelson, from Arizona State University, decried an “overly mechanistic and not culturally-based understanding of what it means to be human.” She described transhumanism as a utopian extension of 19th century utilitarianism as expounded by thinkers such as Jeremy Bentham.

“Is the brain simply a computational machine?” she asked.

The use of military metaphors – such as “the war on cancer” – in the context of mental illness creates the false impression that everything is correctable or even perfectable, she said.

Emory neuroscience program director Yoland Smith said he wants ethics to become a strong component of Emory’s neuroscience program, with similar discussions and debates to come in future years.

Posted on by Quinn Eastman in Neuro Leave a comment

Proton Therapy and Its Importance to Georgia

From Clinic to You

By Walter J. Curran, Jr., MD
Executive Director, Winship Cancer Institute
Chair, Department of Radiation Oncology, Emory University School of Medicine

Walter J. Curran, Jr., MD

Walter J. Curran, Jr., MD

Emory Healthcare is a key player in plans to bring the world’s most advanced radiation treatment for cancer patients to Georgia.  Emory Healthcare has signed a letter of intent with Advanced Particle Therapy, LLC, of Minden, Nevada, opening the door to a final exploratory phase for development of The Georgia Proton Treatment Center – Georgia’s first proton therapy facility.

For certain cancers, proton therapy offers a more precise and aggressive approach to destroying cancerous and non-cancerous tumors, as compared to conventional X-ray radiation. Proton therapy involves the use of a controlled beam of protons to target tumors with precision unavailable in other radiation therapies. According to The National Association for Proton Therapy, the precise delivery of proton energy may limit damage to healthy surrounding tissue, potentially resulting in lower side effects to the patient. This precision also allows for a more effective dose of radiation to be used.

Proton therapy is frequently used in the care of children diagnosed with cancer, as well as in adults who have small, well-defined tumors in organs such as the prostate, brain, head, neck, bladder, lungs, or the spine.  And research is continuing into its efficacy in other cancers.

The gantry, or supporting structure, of a proton therapy machine.

The gantry, or supporting structure, of a proton therapy machine.

The closest proton therapy facility to Georgia is the University of Florida Proton Therapy Institute in Jacksonville.  Currently there are only nine proton therapy centers in the United States, including centers at Massachusetts General Hospital, MD Anderson Cancer Center in Houston and the University of Pennsylvania.

This is an exciting development in our ability to offer not only patients throughout Georgia and the Southeast the widest possible array of treatment options but patients from around the world who can come to Atlanta via the world’s busiest airport, Hartsfield-Jackson International. In addition, we will work to expand its utility and access for patients through collaborative research projects with Georgia Tech and other institutions. Winship physicians will also be able to reach out to their international colleagues and provide direction in how best to study and implement this technology in the care of cancer patients.

Under the letter of intent, Emory Healthcare faculty and staff will provide physician services, medical direction, and other administrative services to the center. Advanced Particle Therapy, through a Special Purpose Company, Georgia Proton Treatment Center, LLC, (GPTC) will design, build, equip and own the center.  The facility, which will be funded by GPTC, will be approximately 100,000 square feet and is expected to cost approximately $200 million.  Site selection for the facility is underway, and pending various approvals, groundbreaking is expected in the Spring of 2012.

Video

The follow video presents a 3D simulation of proton therapy technology.

Additional Information:

Posted on by admin in Uncategorized Leave a comment

The next generation of biomedical engineering innovators

Congratulations to the winners of the InVenture innovation competition at Georgia Tech. The competition aired Wednesday night on Georgia Public Broadcasting. The winners get cash prizes, a free patent filing and commercialization service through Georgia Tech’s Office of Technology Transfer.

Several of the teams have Emory connections, through the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, and the Atlanta Clinical & Translational Science Institute.

Emergency medical professionals know that intubation can be rough. The second place ($10,000) MAID team created a “magnetic assisted intubation device” that helps them place a breathing tube into the trachea in a smoother way. The MAID was designed by Alex Cooper, Shawna Hagen, William Thompson and Elizabeth Flanagan, all biomedical engineering majors. Their clinical advisor was Brian Morse, MD, previously a trauma fellow and now an Emory School of Medicine surgical critical care resident at Grady Memorial Hospital.

“When I first saw the device that the students had developed, I was blown away,” Morse told the Technique newspaper. “It’s probably going to change the way we look at intubation in the next five to 10 years.”

The AutoRhexis team, which won the People’s Choice award ($5,000), invented a device to perform the most difficult step during cataract removal surgery. It was designed by a team of biomedical and mechanical engineering majors: Chris Giardina, Rebeca Bowden, Jorge Baro, Kanitha Kim, Khaled Kashlan and Shane Saunders. They were advised by Tim Johnson, MD, who was an Emory medical student and is now a resident at Columbus Regional Medical Center.

The finalist Proximer team, advised by Emory surgeon Albert Losken, MD, developed a way to detect plastics in the body, which can help breast cancer survivors undergoing reconstruction.

Posted on by Quinn Eastman in Uncategorized Leave a comment

New 3D MRI Technology Puts Young Athletes Back in Action

Emory MedicalHorizon
New technology has made it possible for surgeons to reconstruct ACL tears in young athletes without disturbing the growth plate.

John Xerogeanes, MD, chief of the Emory Sports Medicine Center and colleagues in the laboratory of Allen R. Tannenbaum, PhD, professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, have developed 3-D MRI technology that allows surgeons to pre-operatively plan and perform anatomic Anterior Cruciate Ligament (ACL) surgery.

Link to YouTube video

The ACL is one of the four major ligaments in the knee, somewhat like a rubber band, attached at two points to keep the knee stable. In order to replace a damaged ligament, surgeons create a tunnel in the upper and lower knee bones (femur and tibia), slide the new ACL between those two tunnels and attach it both ends.

Traditional treatment for ACL injuries in children has been a combination of rehabilitation, wearing a brace and staying out of athletics until the child stops growing – usually in the mid-teens – and ACL reconstruction surgery can safely be performed.  Surgery has not been an option with children for fear of damage to the growth plate that would cause serious problems later on.

Xerogeanes explains that prior to using the 3-D MRI technology, ACL operations were conducted with extensive use of X-Rays in the operating room, and left too much to chance when working around growth plates.

Preparation with the new 3-D MRI technology allows surgery to be completed in less time than the traditional surgery using X-Rays, and with complete confidence that the growth plates in young patients will not be damaged.

Video Answers to Questions on ACL Tears

Posted on by Wendy Darling in Uncategorized 1 Comment

Stem cell research center gets NSF support

Stem cell research is on the verge of impacting many elements of medicine, but scientists haven’t yet worked out the processes needed to manufacture sufficient quantities of stem cells for diagnostic and therapeutic purposes.

Todd McDevitt and Robert Nerem

The National Science Foundation (NSF) has awarded $3 million to Georgia Tech to fund a center that will develop engineering methods for stem cell production. The program’s co-leaders are Todd McDevitt, PhD, an associate professor in the Georgia Tech/Emory Department of Biomedical Engineering and Robert Nerem, director of the Emory/Georgia Tech Center for Regenerative Medicine (GTEC), which will administer the award.

“Successfully integrating knowledge of stem cell biology with bioprocess engineering and process development is the challenging goal of this program,” says McDevitt.

Read more

Posted on by admin in Uncategorized Leave a comment

Staring (cell) death in the face: imaging agents for necrotic cells

DNA usually occupies a privileged place inside the cell. Although cells in our body die all the time, an orderly process of disassembly (programmed cell death or apoptosis) generally keeps cellular DNA from leaking all over the place. DNA’s presence outside the cell means something is wrong: tissue injury has occurred and cells are undergoing necrosis.

Researchers from the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University have devised a way to exploit the properties of extracellular DNA to create an imaging agent for injured tissue. Niren Murthy and Mike Davis recently published a paper in Organic Letters describing the creation of “Hoechst-IR.” This imaging agent essentially consists of the DNA-binding compound Hoechst 33258 (often used to stain cells before microscopy), attached to a dye that is visible in the near-infrared range. A water-loving polymer chain between the two keeps the new molecule from crossing cell membranes and binding DNA inside the cell.

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

GRA partnership promotes research collaboration, grows economy

“Other states wish they had what Georgia has: Research universities that work together, and a unified commitment from industry, government and academia to grow a technology-based economy,” states Michael Cassidy, president and CEO of the Georgia Research Alliance (GRA) in the GRA’s recent annual report.”

As one of six GRA universities, Emory has benefited from this unique partnership in numerous ways: through its 11 Eminent Scholars, multidisciplinary university and industry collaborations, and support for research in vaccines, nanomedicine, transplantation, neurosciences, pediatrics, biomedical engineering, clinical research, and drug discovery.

Emory is featured throughout the report, including

  • The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory and its four eminent scholars, Xiaoping Hu, PhD, Eberhard Voit, PhD, Barbara Boyan, PhD and Don Giddens, PhD.
  • Emory transplant medicine expert and GRA Eminent Scholar Allan Kirk, MD, PhD, who collaborates with Andrew Mellor, PhD at the Medical College of Georgia on research to find enzymes that could keep the body from rejecting newly transplanted organs.
  • The Emory-University of Georgia Influenza Center of Excellence and its leading collaborators, GRA Eminent Scholar and Emory Vaccine Center Director Rafi Ahmed, PhD, and Emory microbiologist Richard Compans, PhD, along with UGA GRA Eminent Scholar Ralph Tripp.
Posted on by admin in Uncategorized Leave a comment

Microsoft Life Sciences Award recognizes ACTSI innovation

Microsoft Corp. recently selected the Atlanta Clinical and Translational Science Institute (ACTSI) for a 2010 Life Sciences Innovation Award. The award recognized the ACTSI’s Biomedical Informatics Program for implementing the Thermo Scientific Nautilus Laboratory Information System (LIMS) across ACTSI laboratories.

The ACTSI is a partnership of Emory University, Morehouse School of Medicine and Georgia Institute of Technology, along with other community partners and collaborators. It is one of 46 medical research institutes working to enhance translational research in the United States and is supported by the Clinical and Translational Science Award program, National Institutes of Health, National Center for Research Resources.
Read more

Posted on by admin in Uncategorized Leave a comment

Med into grad program bridges gap between basic and clinical research

Former National Institutes of Health director Elias Zerhouni created a vivid label for a persistent problem. He noted there was a widening gap between basic and clinical research. The “valley of death” describes the gap between basic research, where the majority of NIH funding is directed and many insights into fundamental biology are gained, and patients who need these discoveries translated to the bedside and into the community in order to benefit human health. Thus, a chasm has opened up between biomedical researchers and the patients who would benefit from their discoveries.

Translational research seeks to move ideas from the laboratory into clinical practice

Translational research seeks to move ideas from the laboratory into clinical practice in order to improve human health.

A new certificate program in translational research is designed to empower PhD graduate students to bridge that gap. Participants (PhD graduate students) from Emory, Georgia Tech and Morehouse School of Medicine can take courses in epidemiology, biostatistics, bioethics, designing clinical trials and grant writing, and will have rotations with clinicians and clinical interaction network sites where clinical research studies are carried out to get a better sense of the impact and potential benefit of the research they are conducting.

Read more

Posted on by Quinn Eastman in Uncategorized 2 Comments