Beyond the amyloid hypothesis: proteins that indicate cognitive stability

If you’re wondering where Alzheimer’s research might be headed after the latest large-scale failure of a clinical trial based on the “amyloid hypothesis,” check this Read more

Mother's milk is OK, even for the in-between babies

“Stop feeding him milk right away – just to be safe” was not what a new mother wanted to hear. The call came several days after Tamara Caspary gave birth to fraternal twins, a boy and a girl. She and husband David Katz were in the period of wonder and panic, both recovering and figuring out how to care for them. “A nurse called to ask how my son was doing,” says Caspary, a developmental Read more

Focus on mitochondria in schizophrenia research

Despite advances in genomics in recent years, schizophrenia remains one of the most complex challenges of both genetics and neuroscience. The chromosomal abnormality 22q11 deletion syndrome, also known as DiGeorge syndrome, offers a way in, since it is one of the strongest genetic risk factors for schizophrenia. Out of dozens of genes within the 22q11 deletion, several encode proteins found in mitochondria. A team of Emory scientists, led by cell biologist Victor Faundez, recently analyzed Read more

genome databases

More on NMDA receptor variants + epilepsy/ID

NMDA receptors are complex electrochemical machines, important for signaling between brain cells. Rare mutations in the corresponding genes cause epilepsy and intellectual disability.

Pre-M1 helices in multi-subunit NMDA receptor. Adapted from Ogden et al PLOS Genetics (2017).

In Emory’s Department of Pharmacology, the Traynelis and Yuan labs have been harvesting the vast amounts of information now available from public genome databases, to better understand how changes in the NMDA receptor genes relate to function. (Take a “deeper dive” into their November 2016 publication on this topic here.)

Their recent paper in PLOS Genetics focuses on a particular region in the NMDA receptor, called the pre-M1 helix (see figure). It also includes experiments on whether drugs now used for Alzheimer’s disease, such as memantine, could be repurposed to have beneficial effects for patients with certain mutations. The in vitro data reported here could inform clinical use. Read more

Posted on by Quinn Eastman in Neuro Leave a comment