Repurposing a transplant drug for bone growth

The transplant immunosuppressant drug FK506, also known as tacrolimus or Prograf, can stimulate bone formation in both cell culture and animal Read more

Beyond the amyloid hypothesis: proteins that indicate cognitive stability

If you’re wondering where Alzheimer’s research might be headed after the latest large-scale failure of a clinical trial based on the “amyloid hypothesis,” check this Read more

Mother's milk is OK, even for the in-between babies

“Stop feeding him milk right away – just to be safe” was not what a new mother wanted to hear. The call came several days after Tamara Caspary gave birth to fraternal twins, a boy and a girl. She and husband David Katz were in the period of wonder and panic, both recovering and figuring out how to care for them. “A nurse called to ask how my son was doing,” says Caspary, a developmental Read more

genetics and molecular biology

Sifting through signs of inflammation to analyze causes of Crohn’s disease

When studying Crohn’s disease – an inflammatory disorder of the gastrointestinal tract, a challenge is separating out potential causes from the flood of systemic inflammation inherent in the condition. Researchers led by Subra Kugathasan, MD recently published an analysis that digs under signs of inflammation, in an effort to assess possible causes.

Graduate student Hari Somineni, in Kugathasan’s lab, teamed up with Emory and Georgia Tech geneticists for a sophisticated approach that may have found some gold nuggets in the inflammatory gravel. The results were published in the journal Gastroenterology.

In studying Crohn’s disease, Emory + Georgia Tech researchers may have found some gold nuggets in the inflammatory gravel.

The group looked at DNA methylation in blood samples from pediatric patients with Crohn’s disease, both at diagnosis and after treatment and follow-up. The information came from blood samples from 164 children with Crohn’s disease and 74 controls, as part of the RISK study, which is supported by the Crohn’s & Colitis Foundation and Kugathasan leads.

DNA methylation is a dynamic process that can influence molecular phenotypes of complex diseases by turning the gene(s) on or off. The researchers observed that disrupted methylation patterns at the time of diagnosis in pediatric Crohn’s disease patients returned to those resembling controls following treatment of inflammation

“Our study emphasized how important it is to do longitudinal profiling – to look at the patients before and after treatment, rather than just taking a cross section,” Somineni says.

Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Gestational age estimated via DNA methylation

Researchers have developed a method for estimating developmental maturity of newborns. It is based on tracking DNA methylation, a structural modification of DNA, whose patterns change as development progresses before birth.

The new method could help doctors assess developmental maturity in preterm newborns and make decisions about their care, or estimate the time since conception for a woman who does not receive prenatal care during pregnancy. As a research tool, the method could help scientists study connections between the prenatal environment and health in early childhood and adulthood.

How advanced is the development of a newborn, possibly preterm baby? Geneticists have developed a method for estimating gestational age by looking at DNA methylation.

The study, led by Alicia Smith, PhD and Karen Conneely, PhD, used blood samples from more than 1,200 newborns in 15 cohorts from around the world. The results are published in Genome Biology.

Smith is an associate professor and vice chair of research for the Department of Gynecology and Obstetrics in the School of Medicine, and Conneely is an assistant professor in the Department of Human Genetics. The first author, Anna Knight, is a graduate student in the Genetics and Molecular Biology Program.

Gestational age, is normally estimated by obstetricians using ultrasound during the first trimester, by asking a pregnant woman about her last menstrual period, or by examining the baby at birth. Ultrasound is considered to be the most precise estimate of gestational age. This work extends upon earlier studies of DNA methylation patterns that change over development and predict age and age-related health conditions in children and adults.

The Emory team gathered DNA methylation data from previous studies examining live births and health outcomes, and used an unbiased statistical learning approach to select 148 DNA methylation sites out of many thousands in the genome. By examining methylation at those sites, gestational age could be accurately estimated between 24 and 44 weeks, the authors report. The median difference between age determined by DNA methylation and age determined by an obstetrician estimate was approximately 1 week.

The researchers also found that the difference between a newborn’s age predicted by DNA methylation and by an obstetrician may be another indicator of developmental maturity, and is correlated with birthweight, commonly used as an indicator of perinatal health. Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment