Are immune-experienced mice better for sepsis research?

The goal is to make mouse immune systems and microbiomes more complex and more like those in humans, so the mice they can better model the deadly derangement of Read more

One more gene between us and bird flu

We’re always in favor of stopping a massive viral pandemic, or at least knowing more about what might make one Read more

Antibody diversity mutations come from a vast genetic library

The antibody-honing process of somatic hypermutation is not Read more

genetic code

From the genetic code to new antibiotics

Biochemist Christine Dunham and her colleagues have a new paper in PNAS illuminating a long-standing puzzle concerning ribosomes, the factories inside cells that produce proteins.

Ribosomes are where the genetic code “happens,” because they are the workshops where messenger RNA is read out and proteins are assembled piece by piece. As a postdoc, Dunham contributed to Nobel Prize-winning work determining the molecular structure of the ribosome with mentor Venki Ramakrishnan.

Ribosomes are the workshops for protein synthesis and the targets of several antibiotics

The puzzle is this: how messenger RNA can be faithfully and precisely translated, when the interactions that hold RNA base pairs (A-U and G-C) together are not strong enough. There is enough “wobble” in RNA base pairing such that transfer RNAs that don’t match all three letters on the messenger RNA can still fit.

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment