Beyond the amyloid hypothesis: proteins that indicate cognitive stability

If you’re wondering where Alzheimer’s research might be headed after the latest large-scale failure of a clinical trial based on the “amyloid hypothesis,” check this Read more

Mother's milk is OK, even for the in-between babies

“Stop feeding him milk right away – just to be safe” was not what a new mother wanted to hear. The call came several days after Tamara Caspary gave birth to fraternal twins, a boy and a girl. She and husband David Katz were in the period of wonder and panic, both recovering and figuring out how to care for them. “A nurse called to ask how my son was doing,” says Caspary, a developmental Read more

Focus on mitochondria in schizophrenia research

Despite advances in genomics in recent years, schizophrenia remains one of the most complex challenges of both genetics and neuroscience. The chromosomal abnormality 22q11 deletion syndrome, also known as DiGeorge syndrome, offers a way in, since it is one of the strongest genetic risk factors for schizophrenia. Out of dozens of genes within the 22q11 deletion, several encode proteins found in mitochondria. A team of Emory scientists, led by cell biologist Victor Faundez, recently analyzed Read more

Gary Bassell

Fragile X protein: one toggle switch, many circuits

The fragile X protein — missing in the most common inherited form of intellectual disability — plays a central role in neurons and how they respond to external signals. Cell biologist Gary Bassell and his colleagues have been examining how the fragile X protein (FMRP) acts as a “toggle switch.”

Gary Bassell, PhD

FMRP controls the activity of several genes by holding on to the RNAs those genes encode. When neurons get an electrochemical signal from the outside, FMRP releases the RNAs, allowing the RNAs to be made into protein, and facilitating changes in the neurons linked to learning and memory.

The Bassell lab’s new paper in Journal of Neuroscience reveals the role of another player in this process. The first author is postdoctoral fellow Vijay Nalavadi.

The researchers show that neurons modify FMRP with ubiquitin, the cellular equivalent of a tag for trash pickup, after receiving an external signal. In general, cells attach ubiquitin to proteins so that the proteins get eaten up by the proteasome, the cellular trash disposal bin. Here, neurons are temporarily getting rid of FMRP, prolonging the effects of the external signal.

Posted on by Quinn Eastman in Neuro Leave a comment

Links between autism and epilepsy

An article in the April 2011 issue of Nature Medicine highlights the mechanistic overlap between autism and epilepsy.

By studying how rare genetic conditions known to coincide with both epilepsy and autism—such as Rett syndrome, fragile X syndrome and tuberous sclerosis—unfold at an early age, neuroscientists are finding that both disorders may alter some of the same neural receptors, signaling molecules and proteins involved in the development of brain cell synapses.

Gary Bassell, PhD

Emory cell biologist Gary Bassell and his colleagues have been taking exactly this approach. Recently they published a paper in Journal of Neuroscience, showing that the protein missing in fragile X syndrome, FMRP, regulates expression of an ion channel linked to epilepsy. This could provide a partial explanation for the link between fragile X syndrome and epilepsy.

The Nature Medicine article also mentions a drug strategy, targeting the mTOR pathway, which Bassell’s group has been exploring with fragile X syndrome.

Posted on by Quinn Eastman in Neuro Leave a comment

New drug strategy against fragile X

Even as clinical trials examining potential treatments for fragile X syndrome gain momentum, Emory scientists have identified a new strategy for treating the neurodevelopmental disorder.

In a paper recently published in Journal of Neuroscience, a team led by cell biologist Gary Bassell shows that PI3 kinase inhibitors could restore normal appearance and levels of protein production at the synapses of hippocampal neurons from fragile X model mice. The next steps, studies in animals, are underway.

“This is an important first step toward having a new therapeutic strategy for fragile X syndrome that treats the underlying molecular defect, and it may be more broadly applicable to other forms of autism,” he says.

A recent Nature Biotechnology article describes pharmaceutical approaches to autism and fragile X.

Posted on by Quinn Eastman in Neuro 1 Comment

Mapping mRNAs in the brain

If the brain acts like a computer, which of the brain’s physical features store the information? Flashes of electricity may keep memories and sensations alive for the moment, but what plays the role that hard drives and CDs do for computers?

A simple answer could be: genes turning on and off, and eventually, neurons growing and changing their shapes. But it gets more complicated pretty quickly. Genes can be regulated at several levels:

  • at the level of transcription — whether messenger RNA gets made from a stretch of DNA in the cell’s nucleus
  • at the level of translation — whether the messenger RNA is allowed to make a protein
  • at the level of RNA localization — where the mRNAs travel within the cell

Each neuron has only two copies of a given gene but will have many dendrites that can have more or less RNA in them. That means the last two modes of regulation offer neurons much more capacity for storing information.

Gary Bassell, a cell biologist at Emory, and his colleagues have been exploring how RNA regulation works in neurons. They have developed special tools for mapping RNA, and especially, microRNA — a form of RNA that regulates other RNAs.

In the dendrites of neurons, FMRP seems to control where RNAs end up

In the dendrites of neurons, FMRP seems to control where RNAs end up

Fragile X mental retardation protein (FMRP), linked to the most common inherited form of mental retardation, appears to orchestrate RNA traffic in neurons. Bassell and pharmacologist Yue Feng recently received a grant from the National Institute of Child Health and Development to study FMRP’s regulation of RNA in greater detail. The grant was one of several at Emory funded through the American Recovery and Reinvestment Act’s support for the NIH.

In the video interview above, Bassell explains his work on microRNAs in neurons. Below is a microscope image, provided by Bassell, showing the pattern of FMRP’s localization in neurons.

Posted on by Quinn Eastman in Neuro Leave a comment