‘Genetic doppelgangers:’ Emory research provides insight into two neurological puzzles

An international team led by Emory scientists has gained insight into the pathological mechanisms behind two devastating neurodegenerative diseases. The scientists compared the most common inherited form of amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD) with a rarer disease called spinocerebellar ataxia type 36 (SCA 36). Both of the diseases are caused by abnormally expanded and strikingly similar DNA repeats. However, ALS progresses quickly, typically killing patients within a year or two, while the disease Read more

Emory launches study on COVID-19 immune responses

Emory University researchers are taking part in a multi-site study across the United States to track the immune responses of people hospitalized with COVID-19 that will help inform how the disease progresses and potentially identify new ways to treat it.  The study is funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health. The study – called Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) – launched Friday. Read more

Marcus Lab researchers make key cancer discovery

A new discovery by Emory researchers in certain lung cancer patients could help improve patient outcomes before the cancer metastasizes. The researchers in the renowned Marcus Laboratory identified that highly invasive leader cells have a specific cluster of mutations that are also found in non-small cell lung cancer patients. Leader cells play a dominant role in tumor progression, and the researchers discovered that patients with the mutations experienced poorer survival rates. The findings mark the first Read more

functional MRI

Imaging sleep drunkenness: #IHAW2017

At some point, everyone has experienced a temporary groggy feeling after waking up called sleep inertia. Scientists know a lot about sleep inertia already, including how it impairs cognitive and motor abilities, and how it varies with the time of day and type of sleep that precedes it. They even have pictures of how the brain wakes up piece by piece.

People with idiopathic hypersomnia or IH display something that seems stronger, termed “sleep drunkenness,” which can last for hours. Czech neurologist Bedrich Roth, the first to identify IH as something separate from other sleep disorders, proposed sleep drunkenness as IH’s defining characteristic.

Note: Emory readers may recall the young Atlanta lawyer treated for IH by David Rye, Kathy Parker and colleagues several years ago. Our post today is part of IH Awareness Week® 2017.

Sleep drunkenness is what makes IH distinctive in comparison to narcolepsy, especially narcolepsy with cataplexy, whose sufferers tend to fall asleep quickly. Those with full body cataplexy can collapse on the floor in response to emotions such as surprise or amusement. In contrast, people with IH tend not to doze off so suddenly, but they do identify with the statement “Waking up is the hardest thing I do all day.”

At Emory, neurologist Lynn Marie Trotti and colleagues are in the middle of a brain imaging study looking at sleep drunkenness.

“We want to find out if sleep drunkenness in IH is the same as what happens to healthy people with sleep inertia and is more pronounced, or whether it’s something different,” Trotti says. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Redrawing the brain’s motor map

Neuroscientists at Emory have refined a map showing which parts of the brain are activated during head rotation, resolving a decades-old puzzle. Their findings may help in the study of movement disorders affecting the head and neck, such as cervical dystonia and head tremor.

The results were published in Journal of Neuroscience.

In landmark experiments published in the 1940s and 50s, Canadian neurosurgeon Wilder Penfield and colleagues determined which parts of the motor cortex controlled the movements of which parts of the body.

Penfield stimulated the brain with electricity in patients undergoing epilepsy surgery, and used the results to draw a “motor homunculus”: a distorted representation of the human body within the brain. Penfield assigned control of the neck muscles to a region between those that control the fingers and face, a finding inconsistent with some studies that came later.

Using modern functional MRI (magnetic resonance imaging), researchers at Emory University School of Medicine have shown that the neck’s motor control region in the brain is actually between the shoulders and trunk, a location that more closely matches the arrangement of the body itself.

“We can’t be that hard on Penfield, because the number of cases where he was able to study head movement was quite limited, and studying head motion as he did, by applying an electrode directly to the brain, creates some challenges,” says lead author Buz Jinnah, MD, professor of neurology, human genetics and pediatrics at Emory University School of Medicine. Read more

Posted on by Quinn Eastman in Neuro Leave a comment