Saliva-based SARS-CoV-2 antibody testing

As the Atlanta area recovers from Zeta, we’d like to highlight this Journal of Clinical Microbiology paper about saliva-based SARS-CoV-2 antibody testing. It was a collaboration between the Hope Clinic and investigators at Johns Hopkins, led by epidemiologist Christopher Heaney. Infectious disease specialists Matthew Collins, Nadine Rouphael and several colleagues from Emory are co-authors. They organized the collection of saliva and blood samples from Emory COVID-19 patients at several stages: being tested, hospitalized, and recovered. Read more

Peeling away pancreatic cancers' defenses

A combination immunotherapy approach that gets through pancreatic cancers’ extra Read more

Immune cell activation in severe COVID-19 resembles lupus

In severe cases of COVID-19, Emory researchers have been observing an exuberant activation of B cells, resembling acute flares in systemic lupus erythematosus (SLE), an autoimmune disease. The findings point towards tests that could separate some COVID-19 patients who need immune-calming therapies from others who may not. It also may begin to explain why some people infected with SARS-CoV-2 produce abundant antibodies against the virus, yet experience poor outcomes. The results were published online on Oct. Read more

Fahim Atif

Progesterone could become tool vs glioblastoma

The hormone progesterone could become part of therapy against the most aggressive form of brain cancer. High concentrations of progesterone kill glioblastoma cells and inhibit tumor growth when the tumors are implanted in mice, researchers have found.

The results were recently published in the Journal of Steroid Biochemistry and Molecular Biology.

Glioblastoma is the most common and the most aggressive form of brain cancer in adults, with average survival after diagnosis of around 15 months. Surgery, radiation and chemotherapy do prolong survival by several months, but targeted therapies, which have been effective with other forms of cancer, have not lengthened survival in patients fighting glioblastoma.

The lead author of the current paper is assistant professor of emergency medicine Fahim Atif, PhD. The findings with glioblastoma came out of Emory researchers’ work on progesterone as therapy for traumatic brain injury and more recently, stroke. Atif, Donald Stein and their colleagues have been studying progesterone for the treatment of traumatic brain injury for more than two decades, prompted by Stein’s initial observation that females recover from brain injury more readily than males. There is a similar tilt in glioblastoma as well: primary glioblastoma develops three times more frequently in males compared to females.

These results could pave the way for the use of progesterone against glioblastoma in a human clinical trial, perhaps in combination with standard-of-care therapeutic agents such as temozolomide. However, Stein says that more experiments are necessary with grafts of human tumor cells into animal brains first. His team identified a factor that may be important for clinical trial design: progesterone was not toxic to all glioblastoma cell lines, and its toxicity may depend on whether the tumor suppressor gene p53 is mutated.

Atif, Stein, and colleague Seema Yousuf found that low, physiological doses of progesterone stimulate the growth of glioblastoma tumor cells, but higher doses kill the tumor cells while remaining nontoxic for healthy cells. Similar effects have been seen with the progesterone antagonist RU486, but the authors cite evidence that progesterone is less toxic to healthy cells. Progesterone has also been found to inhibit growth of neuroblastoma cells (neuroblastoma is the most common cancer in infants), as well as breast, ovarian and colon cancers in cell culture and animal models.

 

Posted on by Quinn Eastman in Cancer, Neuro Leave a comment