The time Anna stayed up all night

Almost precisely a decade ago, a young Atlanta lawyer named Anna was returning to work, after being treated for an extraordinary sleep disorder. Her story has been told here at Emory and by national media outlets. Fast forward a decade to Idiopathic Hypersomnia Awareness Week 2018 (September 3-9), organized by Hypersomnolence Australia. What this post deals with is essentially the correction of a date at the tail end of Anna’s story, but one with long-term implications Read more

Mini-monsters of cardiac regeneration

Jinhu Wang’s lab is not producing giant monsters. They are making fish with fluorescent hearts. Lots of cool Read more

Why is it so hard to do good science?

Last week, Lab Land put out a Twitter poll, touching on the cognitive distortions that make it difficult to do high-quality science. Lots of people (almost 50) responded! Thank you! We had to be vague about where all this came from, because it was before the publication of the underlying research paper. Ray Dingledine, in Emory’s Department of Pharmacology, asked us to do the Twitter poll first, to see what answers people would give. Dingledine’s Read more

entorhinal cortex

Nobel Prize for place cells + grid cells

Congratulations to John O’Keefe, May-Britt Moser and Edvard Moser for receiving the 2014 Nobel Prize in Medicine. The prize is for discovering “the brain’s navigation system”: place cells, cells in the hippocampus which are active whenever a rat is in a particular place, and grid cells, cells in the entorhinal cortex which are active when the animal is at multiple locations in a grid pattern.

Former Yerkes researcher Beth Buffalo and her graduate student Nathan Killian were the first to directly detect, via electrode recordings, grid cells in the brains of non-human primates. Buffalo is now at the University of Washington and Killian is at Harvard Medical School.

A significant difference about their experiments was that they could identify grid cells when monkeys were moving their eyes, suggesting that primates don’t have to actually visit a place to construct the same kind of mental map. Another aspect of grid cells in non-human primates not previously seen with rodents is that the cells’ responses change when monkeys are seeing an image for the second time.

Following that report, grid cells were also directly detected in human epilepsy patients. The Mosers themselves noted in a 2014 review, “It will be interesting to see whether the same cells that respond to visual movement in monkeys also respond to locomotion, or whether there is a separate system of grid cells that is responsive to locomotion.”

Posted on by Quinn Eastman in Neuro Leave a comment

Seeing in triangles with grid cells

When processing what the eyes see, the brains of primates don’t use square grids, but instead use triangles, research from Yerkes neuroscientist Beth Buffalo’s lab suggests.

Elizabeth Buffalo, PhD

She and graduate student Nathan Killian recently published (in Nature) their description of grid cells, neurons in the entorhinal cortex that fire when the eyes focus on particular locations.

Their findings broaden our understanding of how visual information makes its way into memory. It also helps us grasp why deterioration of the entorhinal cortex, a region of the brain often affected early by Alzheimer’s disease, produces disorientation.

The Web site RedOrbit has an extended interview with Buffalo. An excerpt:

The amazing thing about grid cells is that the multiple place fields are in precise geometric relation to each other and form a tessellated array of equilateral triangles, a ‘grid’ that tiles the entire environment. A spatial autocorrelation of the grid field map produces a hexagonal structure, with 60º rotational symmetry. In 2008, grid cells were identified Gafas Ray Ban outlet in mice, in bats in 2011, and now our work has shown that grid cells are also present in the primate brain.

Please read the whole thing!

Grid cells fire at different rates depending on where the eyes are focused. Mapping that activity across the visual field produces triangular patterns.

Posted on by Quinn Eastman in Neuro 1 Comment