Life-saving predictions from the ICU

Similar to the “precogs” who predict crime in the movie Minority Report, but for sepsis, the deadly response to infection. Read more

Five hot projects at Emory in 2017

Five hot projects at Emory in 2017: CRISPR gene editing for HD, cancer immunotherapy mechanics, memory enhancement, Zika immunology, and antivirals from Read more

Shaking up thermostable proteins

Imagine a shaker table, where kids can assemble a structure out of LEGO bricks and then subject it to a simulated earthquake. Biochemists face a similar task when they are attempting to design thermostable proteins, with heat analogous to shaking. Read more

Emory Personalized Immunotherapy Center

Freezing stem cells disrupts their function

What applies to meat, vegetables and fish may also apply to cells for use in cell therapy: frozen often isn’t quite as good.

Ian Copland and colleagues from Emory’s Personalized Immunotherapy Center have a paper this week in Stem Cells Reports discussing how freezing and thawing stem cells messes them up. Specifically, it disrupts their actin cytoskeletons and impairs their ability to find their niches in the body. Culturing the cells for 48 hours after thawing does seem to correct the problem, though.

The findings have some straightforward implications for researchers planning to test cell therapies in clinical applications. The authors conclude:

Until such time as a cryopreservation and thawing procedure can yield a viable and fully functional MSC product immediately after thawing, our data support the idea of using live MSCs rather than post-thaw cryo MSCs for clinical evaluation of MSCs as an immunosuppressive agent.

Notably, the Emory Personalized Immunotherapy Center has built a process designed around offering never-frozen autologous (that is, the patient’s own) mesenchymal stem cells, as therapies for autoimmune disorders such as Crohn’s disease.

Posted on by Quinn Eastman in Immunology Leave a comment

Emory University Hospital Set to Be Launch Site for EPIC

Can it really be possible to transform a person’s own cells into a weapon against various forms of disease? And what if those very cells could be retrained to attack cancer cells or to prevent autoimmune diseases?

Answers to these questions and many more are about to soon be realized, as Emory University Hospital will serve as the launch site for the very appropriately-named EPIC (Emory Personalized Immunotherapy Center).

The new Center, which is the creation of Dr. Jacques Galipeau, MD, professor of hematology and medical oncology & pediatrics of Emory University, will soon be operational after final touches have been put on construction of the lab. This cell processing facility will foster development of novel personalized cellular therapies for Emory patients facing catastrophic ailments and unmet medical needs.

According to Galipeau, the premise of EPIC and its overlying mission will focus on cellular and biological therapies that use a patient’s own cells as a weapon to seek and destroy cells that actually make a person sick. In partnership with the Winship Cancer Institute of Emory University, Children’s Healthcare of Atlanta, Aflac Cancer & Blood Disorders Center and the Emory School of Medicine, EPIC seeks to improve the health of children and adults afflicted with cancer and immune disease.

“First and foremost, we seek to bring a level of care and discovery that is first in Georgia, first in human and first in child. Blood and marrow derived cells have been used for more than a quarter century to treat life threatening hematological conditions and are now established therapies worldwide. More recently, the use of specific adult somatic cells from marrow, blood and other tissues are being studied in cellular medicine of a wide array of ailments including heart, lung, neurological and immune diseases,” says Galipeau. “The use of blood borne immune cells can also be exploited for treatment of cancer, autoimmune disease, organ transplantation and chronic viral illnesses such as HIV.”

Galipeau said that once operational, EPIC will begin by working with Crohn’s disease in pediatric and adult patients, an inflammatory bowel disease. Symptoms of Crohn’s disease include severe abdominal pain, diarrhea, fever, weight loss, and the inability for a child to properly grow. Resulting bouts of inflammation may also affect the entire digestive tract, including the mouth, esophagus and stomach.  In some cases, a radical surgery involving the removal of part of the lower intestinal tract is required.

“There is no current answer for what specifically causes Crohn’s disease, nor is there a cure. But we hope that through our research and efforts, we will be able to first target the inflammatory mechanisms in these patients through immunotherapy, and in turn reduce the amount of flare-ups and limit  the damage that occurs from this disease,” says Galipeau.

Galipeau says the EPIC program could represent a powerful cornerstone to the launch and the development of an entirely new, Emory-based initiative which bundles the strengths of the School of Medicine, Emory University Hospital, Children’s Healthcare of Atlanta, and many Woodruff Health Sciences Center centers of excellence,” says Galipeau.

“My ultimate goal is to elevate the biomedical scientific and scholarly enterprise to a higher level – making a difference in the lives of people. The EPIC program and multi-levels of support could be a fundamental underpinning to our success.”

Posted on by Lance Skelly in Immunology Leave a comment