SARS-CoV-2 culture system using human airway cells

Journalist Roxanne Khamsi had an item in Wired highlighting how virologists studying SARS-CoV-2 and its relatives have relied on Vero cells, monkey kidney cells with deficient antiviral responses. Vero cells are easy to culture and infect with viruses, so they are a standard laboratory workhorse. Unfortunately, they may have given people the wrong idea about the controversial drug hydroxychloroquine, Khamsi writes. In contrast, Emory virologist Mehul Suthar’s team recently published a Journal of Virology paper on culturing Read more

Triple play in science communication

We are highlighting Emory BCDB graduate student Emma D’Agostino, who is a rare triple play in the realm of science communication. Emma has her own blog, where she talks about what it’s like to have cystic fibrosis. Recent posts have discussed the science of the disease and how she makes complicated treatment decisions together with her doctors. She’s an advisor to the Cystic Fibrosis Foundation on patient safety, communicating research and including the CF community Read more

Deep brain stimulation for narcolepsy: proof of concept in mouse model

Emory neurosurgeon Jon Willie and colleagues recently published a paper on deep brain stimulation in a mouse model of narcolepsy with cataplexy. Nobody has ever tried treating narcolepsy in humans with deep brain stimulation (DBS), and the approach is still at the “proof of concept” stage, Willie says. People with the “classic” type 1 form of narcolepsy have persistent daytime sleepiness and disrupted nighttime sleep, along with cataplexy (a loss of muscle tone in response Read more

electrophysiology

NMDA receptors: triple-quadruple axel

NMDA receptors are saddled with an unwieldy name, but they are some of the most important* signaling molecules in the brain, both for learning and memory and in neurological and psychiatric diseases.

Kasper Hansen, a postdoc from Stephen Traynelis’ lab who is establishing his own at the University of Montana, is lead author on a recent paper in Neuron, which could spur research on NMDA receptors’ pharmacological properties.

The NMDA receptors in the brain are actually mix-and-match assemblies of four subunits, and most of the time in the brain, three different proteins come together to make one receptor, the authors explain. In the laboratory, it has been easier to study simpler, more homogenous, but also more artificial constructs. Hansen and his colleagues developed a way to build replicas of the more complicated NMDA receptors found in the brain and probe their distinct responses to drugs. Read more

Posted on by Quinn Eastman in Neuro Leave a comment