Two items relevant to long COVID

One of the tricky issues in studying in long COVID is: how widely do researchers cast their net? Initial reports acknowledged that people who were hospitalized and in intensive care may take a while to get back on their feet. But the number of people who had SARS-CoV-2 infections and were NOT hospitalized, yet experienced lingering symptoms, may be greater. A recent report from the United Kingdom, published in PLOS Medicine, studied more than Read more

All your environmental chemicals belong in the exposome

Emory team wanted to develop a standard low-volume approach that would avoid multiple processing steps, which can lead to loss of material, variable recovery, and the potential for Read more

Signature of success for an HIV vaccine?

Efforts to produce a vaccine against HIV/AIDS have been sustained for more than a decade by a single, modest success: the RV144 clinical trial in Thailand, whose results were reported in 2009. Now Emory, Harvard and Case Western Reserve scientists have identified a gene activity signature that may explain why the vaccine regimen in the RV144 study was protective in some individuals, while other HIV vaccine studies were not successful. The researchers think that this signature, Read more

Dravet syndrome

Oxytocin delivery via nanoparticles

The neuropeptide oxytocin, known for promoting social interactions, has attracted interest as a possible treatment for autism spectrum disorder. A challenge is getting the molecule past the blood-brain barrier. Many clinical studies have used delivery via nasal spray, but even then, oxytocin doesn’t last long in the body and shows inconsistent effects.

Emory neuroscientist Andrew Escayg has been collaborating with Mercer/LSU pharmacologist Kevin Murnane on a nanoparticle delivery approach that could get around these obstacles. One of Escayg’s primary interests is epilepsy — specifically Dravet syndrome, a severe genetic form of epilepsy — and oxytocin has previously displayed anti-seizure properties in animal models.

Escayg and Murnane’s recent paper in Neurobiology of Disease shows that when oxytocin is packaged into nanoparticles, it can increase resistance to induced seizures and promote social behavior in a mouse model of Dravet syndrome.

This suggests properly delivered oxytocin could have benefits on both seizures and behavior. In addition to seizures, children and adults with Dravet syndrome often have autism – see this Spectrum News article on the connections.

Escayg reports he is planning a collaboration with oxytocin expert Larry Young at Yerkes, who Tweeted “This is a promising new area of oxytocin research” when the paper was published. Senior postdoc Jennifer Wong has already been working on extending the findings to other mouse models of epilepsy and adding data on spontaneous seizure frequency.

The nanoparticle approach could be used for other neuropeptides such as neuropeptide Y, proposed as a treatment mode for anxiety disorders/PTSD, and hypocretin, the missing molecule in narcolepsy. Murnane formed a company when he was at Mercer to develop the technology.

Posted on by Quinn Eastman in Neuro Leave a comment

Nerve gas, angel dust and genetic epilepsy

Last week, Lab Land noticed similarities between two independent lines of research from the Escayg and Traynelis/Yuan labs at Emory. Both were published recently and deal with rare forms of genetic epilepsy, in which molecular understanding of the cause leads to individualized treatment, albeit with limited benefit.

Both conditions are linked to an excess of neuronal excitation, and both can be addressed using medications that have also been tested for Alzheimer’s. A critical difference is that memantine is FDA-approved for Alzheimer’s, but huperzine A is not.

What condition? Dravet syndrome/GEFS+ Epilepsy-aphasia syndrome
What gene is mutated? SCN1A – sodium ion channel GRIN2A – NMDA receptor subunit
What is the beneficial drug? Huperzine A Memantine
How does the drug work? Acetylcholinesterase inhibitor NMDA receptor antagonist
Other drugs that use the same mechanism Alzheimer’s medications such as donepezil

Irreversible + stronger: insecticides, nerve gas

Ketamine, phencyclidine (aka PCP)
Posted on by Quinn Eastman in Neuro Leave a comment