Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

department of physiology

Neurodegeneration accelerated by intestinal bacteria?

An influential theory about the anatomical trajectory of Parkinson’s disease is getting a microbial boost. The idea, first proposed by neuroanatomist Heiko Braak in 2003, is that pathology and neurodegeneration start in the intestines and then travel to the brain. See this article in Scientific American for background.

Illustration showing neurons with Lewy bodies, depicted as small red spheres, which are deposits of aggregated proteins in brain cells

Timothy Sampson, in Emory’s Department of Physiology, was first author on a recent paper in eLife, which explores the idea that prion-like proteins produced by intestinal bacteria can accelerate the aggregation of similar proteins found in our cells. The findings suggest that interventions targeting intestinal bacteria could modulate neurodegeneration.

Sampson, a former Emory graduate student who did postdoctoral work in Sarkis Mazmaniam’s lab at Caltech, says he will continue the project here. He and his colleagues were looking at the interaction between a bacterial protein called Curli – involved in adhesion + biofilms — and the aggregation-prone mammalian protein alpha-synuclein, known as a main component of the Lewy body clumps seen in Parkinson’s. The experiments were in a mouse model of Parkinson’s neurodegeneration, in which human alpha-synuclein is overproduced.

Looking ahead, Sampson says he is interested in what signals from the microbiome may trigger, accelerate or slow synuclein aggregation. He’s also looking at where in the GI tract synuclein begins to aggregate, possibly facilitated by particular cells in the intestine, and whether the observations with alpha-synuclein hold true for other proteins such as amyloid-beta in Alzheimer’s.

Posted on by Quinn Eastman in Neuro Leave a comment

Probing hyperexcitability in fragile X syndrome

Researchers at Emory University School of Medicine have gained insight into a feature of fragile X syndrome, which is also seen in other neurological and neurodevelopmental disorders.

In a mouse model of fragile X syndrome, homeostatic mechanisms that would normally help brain cells adjust to developmental changes don’t work properly. This helps explain why cortical hyperexcitability, which is linked to sensory sensitivity and seizure susceptibility, gradually appears during brain development.

Studying a model of fragile X syndrome, Emory researchers were looking at neurons displaying single spiking and multi-spiking behavior. 

These physiological insights could help guide clinical research and efforts at early intervention, the scientists say. The results were published Feb. 5 by Cell Reports (open access).

Fragile X syndrome is the most common inherited form of intellectual disability and a leading single-gene cause of autism. Individuals with fragile X syndrome often display sensory sensitivity and some — about 15 percent— have seizures.

Scientists’ explanation for these phenomena is cortical hyperexcitability, meaning that the response of the cortex (the outer part of the brain) to sensory input is more than typical. Cortical hyperexcitability has also been observed in the broader category of autism spectrum disorder, as well as migraine or after a stroke.

At Emory, graduate student Pernille Bülow forged a collaboration between Peter Wenner, PhD and Gary Bassell, PhD. Wenner, interested in homeostatic plasticity, and Bassell, an expert in fragile X neurobiology, wanted to investigate why a mechanism called homeostatic intrinsic plasticity does not compensate for the changes in the brain brought about in fragile X syndrome. More here.

Posted on by Quinn Eastman in Neuro Leave a comment

Inflammation in PD hits the gut

Several groups studying Parkinson’s have had a hunch – a gut feeling, even – that intestinal inflammation is involved in driving the disease. Now Emory researchers led by Malu Tansey, PhD have some evidence from patient samples to back it up, published in the journal Movement Disorders.

IMP graduate student Madelyn Houser

German pathologist Heiko Braak has been honored by the Michael J. Fox Foundation for Parkinson’s Research for his theory, originally published in 2003, proposing that disease pathology – marked by aggregation of the toxic protein alpha-synuclein — may begin in the gastrointestinal tract and migrate from there to the central nervous system. This proposal was both provocative and influential in the Parkinson’s disease (PD) field. And Tansey herself has long been interested in the role of microglia, the immune cells resident in the brain, in PD.

The first author of the new paper, Immunology and Molecular Pathogenesis graduate student Madelyn Houser, notes that digestive problems such as constipation are frequently reported in PD patients. But what is the cause and what is effect? As neurologist Stewart Factor observed for a Emory Medicine article on PD’s non-motor symptoms: “A patient might tell me he’s had recurring constipation for 10 years, but he wouldn’t say anything to a neurologist about it until he starts having other symptoms.” Read more

Posted on by Quinn Eastman in Immunology, Neuro Leave a comment

Anti-TNF vs Alzheimer’s mouse model

An experimental anti-inflammatory drug has positive effects on neuron function and amyloid plaques in a mouse model of Alzheimer’s disease, Emory neuroscientists report. The findings are published in the journal Neurobiology of Disease.

Inflammation’s presence in Alzheimer’s is well established, but it is usually thought of as an accelerator, rather than an initiating cause. While everybody argues about the amyloid hypothesis, there’s a case to be made for intervening against the inflammation. Exactly how is an open question.

The drug tested, called XPro1595, targets the inflammatory signaling molecule tumor necrosis factor (TNF). Commercialized drugs such as etanercept and infliximab, used to treat autoimmune diseases, also block TNF. However, XPro1595 only interferes with the soluble form of TNF and is supposed to have less of an effect on overall immune function.

Senior author Malu Tansey (pictured) and her colleagues say that interfering with TNF could have direct effects on neurons, as well as indirect effects on the immune cells infiltrating the brain. They write that “the most promising finding in our study” is the ability of XPro1595 to restore long-term potentiation or LTP, which is impaired in the Alzheimer’s model mice. Read more

Posted on by Quinn Eastman in Immunology, Neuro Leave a comment

Breath test for Parkinson’s?

Using one to see into the other. Left: canister for breath sample. Right: basal ganglia, a region of the brain usually affected by Parkinson’s.

Scientists think that it may be possible to detect signs of Parkinson’s disease through a breath test.

The Michael J. Fox Foundation for Parkinson’s Research is supporting a clinical study at Emory that will probe this idea. Neuro-immunologist Malu Tansey is working with Hygieia, a Georgia-based company that has developed technology for analyzing volatile organic compounds present in exhaled air.

From the MJFF’s blog:

By collecting and analyzing breath samples in 100 people (50 non-smoking early-stage PD patients and 50 age and sex-matched controls), the researchers hope to define a unique inflammatory PD-specific breath fingerprint that could be used to predict and monitor disease in combination with blood analyses of conventional or newly discovered biomarkers.

“We hypothesize that breath volatile organic compounds (BVOCs) fingerprinting can enable sensitive and specific measures of ongoing inflammation and other processes implicated in the development and/or progression of PD, and thus could represent an early detection tool,” Tansey says.

If results indicate moving forward, Tansey says it will be important to compare the breath sample method against blood tests for inflammatory markers. Other reports on the breath test approach for Parkinson’s have been encouraging. Read more

Posted on by Quinn Eastman in Neuro 1 Comment

How metabolic syndrome interacts with stress – mouse model

Emory researchers recently published a paper in Brain, Behavior and Immunity on the interaction between psychological stress and diet-induced metabolic syndrome in a mouse model.

“The metabolic vulnerability and inflammation associated with conditions present in metabolic syndrome may share common risk factors with mood disorders. In particular, an increased inflammatory state is recognized to be one of the main mechanisms promoting depression,” writes lead author Betty Rodrigues, a postdoc in Malu Tansey’s lab in the Department of Physiology.

This model may be useful for identification of possible biomarkers and therapeutic targets to treat metabolic syndrome and mood disorders. As a follow-up, Tansey reports that her team is investigating the protective effects of an anti-inflammatory agent on both the brain and the liver using the same model.

Metabolic syndrome and stress have a complex interplay throughout the body, the researchers found. For example, psychological stress by itself does not affect insulin or cholesterol levels, but it does augment them when combined with a high-fat, high-fructose diet. In contrast, stress promotes adaptive anti-inflammatory markers in the hippocampus (part of the brain), but those changes are wiped out by a high-fat, high-fructose diet. If you want to get rid of stress, one way of doing it is by playing games such as slot gacor.

The findings show synergistic effects by diet and stress on gut permeability promoted by inflammation, and the biliverdin pathway. Biliverdin, a product of heme breakdown, is responsible for a greenish color sometimes seen in bruises.

“Stress and high-fat high-fructose diet promoted disturbances in biliverdin, a metabolite associated with insulin resistance,” Rodrigues writes. “To the best of our knowledge, our results reveal for the first time evidence for the synergistic effect of diet and chronic psychological stress affecting the biliverdin pathway.”

Read more

Posted on by Quinn Eastman in Heart, Immunology, Neuro Leave a comment

Emory labs on LabTV

This summer, video producers from the web site LabTV came to two laboratories at Emory. We are pleased to highlight the first crop of documentary-style videos.

LabTV features hundreds of young researchers from universities and institutes around the United States, who tell the public about themselves and their research. The videos include childhood photos and explanations from the scientists about what they do and what motivates them. Screen Shot 2015-12-18 at 9.14.51 AM

The two Emory labs are: Malu Tansey’s lab in the Department of Physiology, which studies the intersection of neuroscience and immunology, focusing on neurodegenerative disease, and Mike Davis’ lab in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, which is developing regenerative approaches and technologies for heart disease in adults and children. Read more

Posted on by Quinn Eastman in Heart, Immunology, Neuro Leave a comment

Happy birthday, spinal cord neurons

Congratulations to JoAnna Anderson, postdoctoral fellow in Francisco Alvarez’ lab, for winning the Best Image contest, part of the Postdoctoral Research Symposium taking place Thursday. We will have explanations of the second and third place images Thursday and Friday.

The brief description of Anderson’s image is: “EdU birthdating of V1 inhibitory interneurons in the postnatal day 5 lumbar spinal cord.” But how did all those colors get in there and what do they mean? Alvarez explains:

You can hop over Dr. Juris Shibayama site to avail the best spinal cord treatments.Now the work is about finding the times of neurogenesis of the many inhibitory neurons that pattern motor output in the ventral horn of the spinal cord, so that our muscles contract in a coordinated manner to achieve the desired movements.

For example, when one muscle contracts, the muscle with the opposite action on the same joint will be inhibited. Anderson and her fellow postdoc Andre Rivard have been studying the development of the V1 neurons that carry out this inhibition.

AndersonJoAnnaThe image shows a slice of a 5 day old mouse’s spinal cord, and we can see individual cells. Some of the neurons are producing fluorescent proteins: one of the proteins is red, the other is green, and where both proteins are present, a yellow or orange color can be seen. The red and the green colors are indicators for two genes, Engrailed-1 and FoxP2, respectively, both of which regulate neurons’ development.

In addition, the white spots at the top come from EdU (5-ethynyl-2’-deoxyuridine), a chemical that impersonates a building block of DNA well enough to get incorporated into cells when they are dividing. It is helpful to remember that neurons are cells that have stopped dividing. Giving embryos a pulse of EdU is a way to mark the point at which progenitor cells mature and become neurons.

By repeating the experiment at different dates, the researchers can see that FoxP2 positive green cells are generated after the FoxP2 negative red cells. Both types of cells are derived from the same progenitors, but in different cell cycles. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Neuroinflammation: a different way to look at Parkinson’s disease

Emory physiologist Malu Tansey and her colleagues are using recent insights into the role of inflammation in Parkinson’s disease to envision new treatments. One possible form this treatment strategy could take would be surprisingly simple, and comparable to medications that are approved for rheumatoid arthritis.

Malu Tansey, PhD

Understanding the role of inflammation in Parkinson’s requires a shift in focus. Many Parkinson’s researchers understandably emphasize the neurons that make the neurotransmitter dopamine. They’re the cells that are dying or already lost as the disease progresses, leading to tremors, motor difficulties and a variety of other symptoms.

But thinking about the role of inflammation in Parkinson’s means getting familiar with microglia, the immune system’s field reps within the brain. At first, it was thought that the profusion of microglia in the brains of Parkinson’s patients was just a side effect of neurodegeneration. The neurons die, and the microglia come in to try to clean up the debris.

Now it seems like microglia and inflammation might be one of the main events, if not the initiating event.

“Something about the neurons’ metabolic state, whether it’s toxins, oxidative stress, unfolded proteins, or a combination, makes them more sensitive. But inflammation, sustained by the presence of microglia, is what sends them over the edge,” Tansey says.

She says that several recent studies have led to renewed attention to this area:

  1. In vivo PET imaging using a probe for microglia has allowed scientists to see inflammation starting early in the progression of Parkinson’s (see figure below)
  2. Epidemiology studies show that taking ibuprofen regularly is linked to lower incidence of Parkinson’s
  3. Experiments with animal models of genetic susceptibility demonstrate that inflammatory agents like endotoxin can accelerate neurodegeneration
  4. Genomics screens have identified HLA-DR, an immune system gene, as a susceptibility marker for Parkinson’s (Emory’s Stewart Factor was a co-author on this paper)

Popping a few ibuprofen pills everyday for prevention and possibly damaging the stomach along the way is probably not going to work well, Tansey says. It should be possible to identify a more selective way to inhibit microglia, which may be able to inhibit disease progression after it has started.

Activated microglia in the midbrain and striatum of a Parkinson's patient

Targeting TNF (tumor necrosis factor), an important inflammatory signaling molecule, may be one way to go. Anti-TNF agents are already used to treat rheumatoid arthritis and inflammatory bowel disease. This January, Tansey and her co-workers published a paper showing that a gene therapy approach using decoy TNF can reduce neuronal loss in a rat model of Parkinson’s. More recently, her lab has also shown that targeting the gene RGS10 is another way to inhibit microglia and reduce neurodegeneration in the same models.

It is important to note that in the rat studies, they do surgery and put the gene therapy viral vector straight into the brain. She says it might possible to perform peripheral gene therapy with the microglia, or even anti-TNF medical therapy. In terms of mechanism, decoy (technically, dominant negative) TNF is more selective and may avoid the side effects, such as opportunistic infections, of existing anti-TNF agents.

Posted on by Quinn Eastman in Neuro 1 Comment