Exosomes as potential biomarkers of radiation exposure

Exosomes = potential biomarkers of radiation in the Read more

Before the cardiologist goes nuclear w/ stress #AHA17

Measuring troponin in CAD patients before embarking on stress testing may provide Read more

Virus hunting season open

Previously unknown viruses, identified by Winship + UCSF scientists, come from a patient with a melanoma that had metastasized to the Read more

department of pharmacology

Personalized molecular medicine part 2

This is a continuation of the post from last week on the early-onset epilepsy patient, whom doctors were able to devise an individualized treatment for. The treatment was based on Emory research on the molecular effects of a mutation in the patient’s GRIN2A gene, discovered through whole exome sequencing.*

For this patient, investigators were able to find the Ray Ban Baratas cause for a previously difficult to diagnose case, and then use a medication usually used for Alzheimer’s disease (memantine) to reduce his seizure frequency.

Last week, I posed the question: how often do we move from a disease-causing mutation to tailored treatment? Read more

Posted on by Quinn Eastman in Cancer, Neuro Leave a comment

True personalized medicine: from mutation to treatment

Stephen Traynelis and Hongjie Yuan

Stephen Traynelis, PhD and Hongjie Yuan, MD, PhD

How often can doctors go from encountering a patient with a mysterious disease, to finding a mutation in a gene that causes that disease, to developing a treatment crafted for that mutation?

This is true personalized molecular medicine, but it’s quite rare.

How rare this is, I’d like to explore more, but first I should explain the basics.

At Emory, Stephen Traynelis and Hongjie Yuan have been working with Tyler Pierson, David Adams, William Gahl, Cornelius Boerkoel and doctors at the National Institutes of Health’s Undiagnosed Diseases Program (UDP) to investigate the effects of mutations in the GRIN2A gene.

Their report on the molecular effects of one such mutation, which caused early-onset epilepsy and intractable seizures in a UDP patient, was recently published in Nature Communications.

With that information in hand, UDP investigators were able to repurpose an Alzheimer’s medication as an anticonvulsant that was effective in reducing seizure frequency in that patient. [The details on that are still unpublished but coming soon.]

Read more

Posted on by Quinn Eastman in Neuro Leave a comment

The creeping edges of cells: lamellipodia

Lamellipodia with red box
This month’s Image feature highlights lamellipodia, the thin sheet-like regions at the leading edges of migrating cells. Lamellipodia act as tiny creeping motors that pull the cell forward.

To help visualize lamellipodia, Adriana Simionescu-Bankston, a graduate student in Grace Pavlath’s lab, provided us with this photo of muscle cells. The red box shows an example of lamellipodia. Notice the edge of the cell, where the green color is more intense.

The green color comes from FITC-phalloidin, which stains F-actin, the Ray Ban outlet filaments that make up a large part of the cells’ internal skeleton. (Phalloidin is an actin-binding toxin originally isolated from death cap mushrooms, and FITC is what makes it green.) The blue color comes from DAPI, a dye that stains the DNA in the nucleus.

Simionescu-Bankston and Pavlath recently published a paper in the journal Developmental Biology, examining the function of a protein called Bin3 in muscle development and regeneration. They found that Bin3 appears to regulate lamellipodia formation; in mice that lack Bin3, muscle cells have fewer lamellipodia and the muscle tissues regenerate slower after injury. Bin3 is also important in the eye, since the “knockout” mice develop cataracts soon after birth.

 

Posted on by Quinn Eastman in Uncategorized Leave a comment

New molecular target in dystonia

Emory researchers led by pharmacologist Ellen Hess have identified a new molecular target in dystonia. Their findings, recently published in the Journal of Pharmacology and Experimental Therapeutics, could help doctors find drugs for treating the movement disorder.

Ellen Hess, PhD

Dystonia gives sufferers involuntary muscle contractions that cause rigid, twisting movements and abnormal postures. It is the third most common movement disorder, after tremor and Parkinson’s disease. Neurologists can sometimes use drugs to address the symptoms of dystonia but there is no cure.

A 2008 review by Hess (PDF) concludes that compared with other neurological disorders, “our understanding of the biology and potential treatments for dystonia is in its infancy.” Still, scientists have known for a while that the cerebellum, a region of the brain that regulates movement, is involved.

“We focused on the cerebellum because studies in patients with dystonia often show that this part of the brain is more active, when examined by MRI,” Hess says. “The abnormal overactivity of the cerebellum is seen in patients with all different types of dystonia, so it seems to be a common hotspot. Our goal was to understand what might be causing the overactivity in mice because if we can stop the overactivity, we might be able to stop the dystonia.”

Hess and her colleagues discovered that drugs that stimulate AMPA receptors induce dystonia when introduced into the mouse cerebellum. Their results suggest that drugs that act in reverse, blocking AMPA receptors, could be used to treat dystonia.

Postdoctoral fellow Xueliang Fan is the first author of the paper. Emory neurologist H.A. Jinnah, director of a NIH-supported network of clinical research sites focusing on dystonia, is a co-author.

AMPA receptors are a subset of glutamate receptors, a large group of “receiver dishes” for excitatory signals in the brain. Fan performed a variety of experiments to show that AMPA receptor activity plays a specific role in generating dystonia. For example, drugs that affect other types of glutamate receptors did not induce dystonia. AMPA receptor blockers can also reduce dystonia in a genetic model, the “tottering” mouse.

Although pharmaceutical companies have already been testing AMPA receptor blockers as potential antiseizure drugs, caution is in order. AMPA receptor stimulators/ enhancers (or “ampakines”) have been identified as potential enhancers of learning and memory, so AMPA receptor blockers may interfere with those processes.

“Our results suggest that reducing AMPA receptor activity could help alleviate dystonia but we still have a lot of work to do before we know whether blocking AMPA receptor activity in patients will really help,” Hess says. “Since there aren’t many drugs that act at AMPA receptors, one of our goals is to identify drugs that change the ‘downstream’ effects of AMPA receptor activation. For example, we may be able to find other drug classes that change neuronal activity in the same way that AMPA receptor blockade changes activity.”

Posted on by Quinn Eastman in Neuro Leave a comment