'Master key' microRNA has links to both ASD and schizophrenia

Recent studies of complex brain disorders such as schizophrenia and autism spectrum disorder (ASD) have identified a few "master keys," risk genes that sit at the center of a network of genes important for brain function. Researchers at Emory and the Chinese Academy of Sciences have created mice partially lacking one of those master keys, called MIR-137, and have used them to identify an angle on potential treatments for ASD. The results were published this Read more

Shape-shifting RNA regulates viral sensor

OAS senses double-stranded RNA: the form that viral genetic material often takes. Its regulator is also Read more

Mapping shear stress in coronary arteries can help predict heart attacks

Predicting exactly where and when a future seismic fault will rupture is a scientific challenge – in both geology and Read more

Department of Pediatrics

Tapping evolution to improve biotech products

Scientists can improve protein-based drugs by reaching into the evolutionary past, a paper published this week in Nature Biotechnology proposes.

As a proof of concept for this approach, the research team from Emory, Children’s Healthcare of Atlanta and Georgia Tech showed how “ancestral sequence reconstruction” or ASR can guide engineering of the blood clotting protein known as factor VIII, which is deficient in the inherited disorder hemophilia A.

fviii_2r7e

Structure of Factor VIII

Other common protein-based drugs include monoclonal antibodies, insulin, human growth hormone and white blood cell stimulating factors given to cancer patients. The authors say that ASR-based engineering could be applied to other recombinant proteins produced outside the human body, as well as gene therapy.

It has been possible to produce human factor VIII in recombinant form since the early 1990s. However, current factor VIII products still have problems: they don’t last long in the blood, they frequently stimulate immune responses in the recipient, and they are difficult and costly to manufacture.

Experimental hematologist and gene therapist Chris Doering, PhD and his colleagues already had some success in addressing these challenges by filling in some of the sequence of human factor VIII with the same protein from pigs.

“We hypothesized that human factor VIII has evolved to be short lived in the blood to reduce the risk of thrombosis,” Doering says. “And we reasoned that by going even farther back in evolutionary history, it should be possible to find more stable, potent relatives.”

Doering is associate professor of pediatrics at Emory University School of Medicine and Aflac Cancer and Blood Disorders Center of Children’s Healthcare of Atlanta. The first author of the paper is former Molecular and Systems Pharmacology graduate student Philip Zakas, PhD.

Doering’s lab teamed up with Trent Spencer, PhD, director of cell and gene therapy for the Aflac Cancer and Blood Disorders Center, and Eric Gaucher, PhD, associate professor of biological sciences at Georgia Tech, who specializes in ASR. (Gaucher has also worked with Emory biochemist Eric Ortlund – related item on ASR from Gaucher)

ASR involves reaping the recent harvest of genome sequences from animals as varied as mice, cows, goats, whales, dogs, cats, horses, bats and elephants. Using this information, scientists reconstruct a plausible ancestral sequence for a protein in early mammals. They then tweak the human protein, one amino acid building block at a time, toward the ancestral sequence to see what kinds of effects the changes could have. Read more

Posted on by Quinn Eastman in Immunology, Uncategorized Leave a comment

Vaccine vs many common cold viruses achievable

Scientists are making the case that a vaccine against rhinoviruses, the predominant cause of the common cold, is achievable.

The quest for a vaccine against rhinoviruses may have seemed quixotic, because there are more than 100 varieties circulating around the world. Even so, the immune system can handle the challenge, researchers from Emory University School of Medicine and Children’s Healthcare of Atlanta say.

Martin Moore, PhD

Martin Moore, PhD

Vaccines that combine dozens of varieties of rhinovirus at once are effective in stimulating antiviral antibodies in mice and monkeys, the researchers report in Nature Communications. The paper was also posted on Biorxiv before publication.

“We think that creating a vaccine for the common cold can be reduced to technical challenges related to manufacturing,” says Martin Moore, PhD, associate professor of pediatrics at Emory University School of Medicine and Children’s Healthcare of Atlanta. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Anticancer strategy: expanding what is druggable

Scientists at Winship Cancer Institute, Emory University have identified compounds that stop two elusive anticancer targets from working together. In addition to striking two birds with one stone, this research could expand the envelope of what is considered “druggable.”

fx1-1Many of the proteins and genes that have critical roles in cancer cell growth and survival have been conventionally thought of as undruggable. That’s because they’re inside the cell and aren’t enzymes, for which chemists have well-developed sabotage strategies.

In a twist, the potential anticancer drugs described in Cancer Cell disable an interaction between a notorious cancer-driving protein, MDM2, and a RNA encoding a radiation-resistance factor, XIAP.

The compounds could be effective against several types of cancer, says senior author Muxiang Zhou, MD, professor of pediatrics (hematology/oncology) at Emory University School of Medicine and Aflac Cancer and Blood Disorders Center.

In the paper, the compounds show activity against leukemia and neuroblastoma cells in culture and in mice, but a fraction of many other cancers, such as breast cancers (15 percent) and sarcoma (20 percent), show high levels of MDM2 and should be susceptible to them.

Read more

Posted on by Quinn Eastman in Cancer 1 Comment

Bile acid uptake inhibitor prevents NASH/fatty liver in mice

Drugs that interfere with bile acid recycling can prevent several aspects of NASH (nonalcoholic steatohepatitis) in mice fed a high-fat diet, scientists from Emory University School of Medicine and Children’s Healthcare of Atlanta have shown.

The findings suggest that these drugs, known as ASBT inhibitors, could be a viable clinical strategy to address NASH, an increasingly common liver disease. The results were published in Science Translational Medicine on September 21, 2016.

“By targeting a process that takes place in the intestine, we can improve liver function and reduce insulin resistance in a mouse model of NASH,” says senior author Saul Karpen, MD, PhD. “We can even get fat levels in the liver down to what we see in mice fed a regular diet. These are promising results that need additional confirmation in human clinical trials.”

Karpen is Raymond F. Schinazi distinguished professor of pediatrics at Emory University School of Medicine and chief of the Division of Pediatric Gastroenterology, Hepatology and Nutrition at Children’s Healthcare of Atlanta. He and Paul Dawson, PhD, Emory professor of pediatrics, jointly run a lab that investigates the role of bile acids in liver disease.

Saul Karpen, MD, PhD

Saul Karpen, MD, PhD

Many people in developed countries have non-alcoholic fatty liver disease, an accumulation of fat in the liver that is linked to diet and obesity. Fatty liver disease confers an elevated risk of type II diabetes and heart disease. NASH is a more severe inflammation of the liver that can progress to cirrhosis, and is a rising indication for liver transplant. Besides diet and exercise, there are no medical treatments for NASH, which affects an estimated 2 to 5 percent of Americans. Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Cardiac ‘disease in a dish’ models advance arrhythmia research

New research illustrates how “disease in a dish” stem cell technology can advance cardiology.

Scientists led by Chunhui Xu, PhD derived cardiac muscle cells from a teenaged boy with an inherited heart arrhythmia, and used them to study how his cells respond to drugs. They did this not through a cardiac biopsy, but by converting some of the boy’s skin cells into induced pluripotent stem cells, and then into cardiac muscle cells.

Xu, director of the Cardiomyocyte Stem Cell Lab in Emory’s Department of Pediatrics, says this approach has been helpful in the study of other inherited arrhythmias and cardiomyopathies (example: 2011 Nature paper on long QT syndrome). In addition, Xu says, human-derived cardiac muscle cells could be used for toxicology testing for new drugs, since the molecules that regulate human cardiac muscle cells functions are distinct from those in animal models.

The findings were published on September 7 in Disease Models & Mechanisms.

The boy who provided the cells has CPVT (catecholaminergic polymorphic ventricular tachycardia), as do some of his relatives. CPVT, which occurs in about 1 in 10,000 people, is a major cause of sudden cardiac death in people younger than 40.

CPVT_arrhythmia smaller

In the patient whose cells are described in the paper, the drug flecainide could suppress arrhythmias that would otherwise appear during exercise. Electrocardiography from Preininger et al, Disease Models & Mechanisms (2016) via Creative Commons.

Arrhythmias in CPVT are almost exclusively brought on by activities that generate high levels of epinephrine, also known as adrenaline: heavy exertion, sports or emotional stress. Thus, affected individuals need to take medication regularly and usually should avoid competitive sports. The boy in the study also had an implanted cardiac defibrillator.

CPVT is generally treatable with beta-blockers, but about 25 percent of patients – including the boy in the study — are inadequately protected from arrhythmias by beta-blockers. Taking the drug flecainide, also used to treat atrial fibrillation, provides him an additional level of control.

Xu and her colleagues could duplicate those effects with his cardiac muscle cells in culture, by observing the ability of the drugs to suppress aberrant “calcium sparks.”

“We were able to recapitulate in a petri dish what we had seen in the patient,” says co-author Peter Fischbach, MD, chief academic officer at Children’s Healthcare of Atlanta’s Sibley Heart Center and associate professor of pediatrics at Emory University School of Medicine. “The hope is that in the future, we will be able to do that in reverse order.” Read more

Posted on by Quinn Eastman in Heart Leave a comment

Microgravity means more cardiac muscle cells

Cardiac muscle cells derived from stem cells could eventually be used to treat heart diseases in children or adults, reshaping hearts with congenital defects or repairing damaged tissue.

srep30956-f2

Cardiomyocytes produced with the help of simulated microgravity. Red represents the cardiac muscle marker troponin, and green is cadherin, which helps cells stick to each other. Blue = cell nuclei. From Jha et al SciRep (2016).

Using the right growth factors and conditions, it is possible to direct pluripotent stem cells into becoming cardiac muscle cells, which form spheres that beat spontaneously. Researchers led by Chunhui Xu, PhD, director of the Cardiomyocyte Stem Cell Laboratory in Emory’s Department of Pediatrics, are figuring out how to grow lots of these muscle cells and keep them healthy and adaptable.

As part of this effort, Xu and her team discovered that growing stem cells under “simulated microgravity” for a few days stimulates the production of cardiac muscle cells, several times more effectively than regular conditions. The results were published on Friday, Aug. 5 in Scientific Reports. The first author of the paper is postdoctoral fellow Rajneesh Jha, PhD. Read more

Posted on by Quinn Eastman in Heart Leave a comment

How Zika infects the placenta

Zika virus can infect and replicate in immune cells from the placenta, without killing them, scientists have discovered. The finding may explain how the virus can pass through the placenta of a pregnant woman, on its way to infect developing brain cells in her fetus.

Zika_in_vitro_smaller

Infected placental macrophages. Zika antigens visible in red. From Quicke et al (2016).

The results were published in Cell Host & Microbe.

“Our results substantiate the limited evidence from pathology case reports,” says senior author Mehul Suthar, PhD, assistant professor of pediatrics at Emory University School of Medicine. “It was known that the virus was getting into the placenta. But little was known about where the virus was replicating and in what cell type.”

Scientists led by Suthar and Emory pediatric infectious disease specialist Rana Chakraborty, MD, found that Zika virus could infect placental macrophages, called Hofbauer cells, in cell culture. The virus could also infect another type of placental cell, called cytotrophoblasts, but only after a couple days delay and not as readily. Other researchers recently reported that syncytiotrophoblasts, a more differentiated type of placental cell than cytotrophoblasts, are resistant to Zika infection.

The cells for the experiments were derived from full-term placentae, obtained from healthy volunteers who delivered by Cesarean section. The level of viral replication varied markedly from donor to donor, which hints that some women’s placentae may be more susceptible to viral infection than others. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Manipulating motivation in mice

Emory researchers have identified molecular mechanisms that regulate motivation and persistence in mice. Their findings could have implications for intervention in conditions characterized by behavioral inflexibility, such as drug abuse and depression.

Scientists showed that by manipulating a particular growth factor in one region of the brain, they could tune up or down a mouse’s tendency to persist in seeking a reward. In humans, this region of the brain is located just behind the eyes and is called the medial orbitofrontal cortex or mOFC.

“When we make decisions, we often need to gauge the value of a reward before we can see it — for example, will lunch at a certain restaurant be better than lunch at another, or worth the cost,” says Shannon Gourley, PhD, assistant professor of pediatrics and psychiatry at Emory University School of Medicine. “We think the mOFC is important for calculating value, particularly when we have to imagine the reward, as opposed to having it right in front of us.”

The results were published Wednesday in Journal of Neuroscience.

Shannon Gourley, PhD

Being able to appropriately determine the value of a perceived reward is critical in goal-directed decision making, a component of drug-seeking and addiction-related behaviors. While scientists already suspected that the medial orbitofrontal cortex was important for this type of learning and decision-making, the specific genes and growth factors were not as well-understood.

The researchers focused on brain-derived neurotrophic factor (BDNF), a protein that supports the survival and growth of neurons in the brain. BDNF is known to play key roles in long-term potentiation and neuronal remodeling, both important in learning and memory tasks. Variations in the human gene that encodes BDNF have been linked with several psychiatric disorders.

Read more

Posted on by Quinn Eastman in Neuro Leave a comment

The unsweetened option

Pediatric hepatologist Miriam Vos is starting a new study testing the effects of a low-sugar diet in children with NAFLD (non-alcoholic fatty liver disease). The study is supported by the Nutrition Science Initiative and conducted in a partnership with UCSD/Rady Children’s Hospital, San Diego. See below for more on NUSI.

While there are no medications approved for NAFLD – a healthy diet and exercise are the standard of care – plenty of drugs are under development, as a recent article from Mitch Leslie in Science illustrates. As a reality check and benchmark, the NUSI study will address whether the low-tech intervention of altering diet can be effective.

Lab Land has delved into NAFLD and its increasing prevalence in previous posts. Plenty of correlational data shows that sugar intake is linked to NAFLD (a recent paper from the Framingham Heart Study), but Vos points out that there are no studies showing that reducing sugar is sufficient to drive improvement in the disease.

Diet is a challenge to examine in humans rigorously. In observational studies, investigators are always bumping up against the limits of memory and accurate reporting. In an interventional study with adults, it’s possible to provide them a completely defined menu for a short time in a closed environment, but that’s less practical for longer periods or with children.

The press release announcing the NUSI study says: half of the families will eat and drink what they normally do while the rest will be put on sugar-free meals and snacks, all of which will be provided for the participants and their families for eight weeks.

Miriam Vos, MD

I was curious about how this would work, especially for boys aged 11 to 16 (the participants in her study), so I asked Vos more about it for Lab Land.

“We try to provide them a diet that is otherwise similar to what the family is used to,” she says. “For example, if they’re accustomed to home-cooked meals, our team of nutritionists will work with them to find different recipes.” Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

HIV virions attached to cell membrane

The third winner of the Best Image contest from the Postdoctoral Research Symposium, from postdoc Joshua Strauss in electron microscopist Elizabeth Wright’s lab.

Strauss explains:

Tetherin is a host cell factor that mechanically links HIV-1 to the plasma membrane. This is the first time anyone has imaged tethered HIV-1 by cryo-electron tomography. In doing so, we were able to learn about the length and arrangement of the tethers.

Note: Tetherin also studied by Paul Spearman + colleagues.Joshua_Strauss_OPE_Image

Cryo-electron tomography is an imaging technique which enables scientists to look at biological specimens in a “native-like” (frozen hydrated) state, without the chemical fixatives or heavy metal stains typically used for conventional electron microscopy.

The 3D reconstruction was manually segmented to highlight the different viral and cellular components: HIV-1 virions (lavender), mature conical-cores (aqua blue), immature Gag lattice (pink), plasma membrane (peach), rod-like tethers (sea green).

Posted on by Quinn Eastman in Immunology Leave a comment