Elevated troponin after exercise refines cardiac risk prediction

Elevated troponin levels in response to exercise can predict future outcomes in patients with coronary artery disease -- better than stress tests with Read more

For genetically altered mice/rats, freeze and recharge

Animals’ sperm (and occasionally embryos) can be carefully preserved in cold-resistant straws and stored in liquid Read more

Department of Orthopedics

Delayed mechanical strain promotes angiogenesis in bone/wound healing

The natural processes of wound or bone healing rely on the growth of new blood vessels, or angiogenesis. If someone breaks a bone, it is standard practice to apply a cast and immobilize the broken bone, so that healing can proceed without mechanical distortion. 

After those initial stages of healing, applying surprising amounts of pressure can encourage angiogenesis, according to a new paper in Science Advances from biomedical engineer Nick Willett’s lab.

“These data have implications directly on bone healing and more broadly on wound healing,” Willett says. “In bone healing or grafting scenarios, physicians are often quite conservative in how quickly patients begin to load the repair site.”

Willett’s lab is part of both Emory’s Department of Orthopedics and the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, and is based at the Atlanta Veterans Affairs Medical Center.

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Repurposing a transplant drug for bone growth

The transplant immunosuppressant drug FK506, also known as tacrolimus or Prograf, can stimulate bone formation in both cell culture and animal models. This info comes from orthopedics researcher Nick Willett, PhD and colleagues, published in International Journal of Molecular Sciences (open access).

Nick Willett, PhD

The results suggest that FK506 might be repurposed as a “stand-alone” replacement for recombinant BMP-2 (bone morphogenic protein 2). That product has been a huge commercial success for Medtronic, in the context of spinal fusion surgeries, although controversial because of cost and side effects.

BMP-2 is more potent gram for gram, but FK506 still may offer some opportunities in local delivery. From Sangadala et al (2019)

One of Willett’s co-authors is orthopedics chair Scott Boden, MD, whose lab previously developed a system to search for drugs that could enhance BMP-2. Previously, other researchers had observed that FK506 can enhance the action of BMP-2 – this makes sense because FK506’s target protein is a regulator of the BMP pathway. Willett’s team used FK506 on its own, delivered in a collagen sponge.

“That is the big finding here, that it has the potential to be used on its own without any BMP-2,” he says.

The sponge is a possible mechanism for getting the drug to tissues without having too many systemic effects. Willett’s lab is now working on refining delivery, dosing and toxicity, he says.

Willett, based at the Atlanta VA Medical Center, is in the Department of Orthopedics and the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory. He and Sree Sangadala, PhD (first author of the IJMS paper) currently have a grant from National Center for Advancing Translational Sciences on this project.

 

 

Posted on by Quinn Eastman in Immunology Leave a comment