Learn about science writing careers from a pro

Damiano has experience at a communications/PR agency for life science and healthcare Read more

The time Anna stayed up all night

Almost precisely a decade ago, a young Atlanta lawyer named Anna was returning to work, after being treated for an extraordinary sleep disorder. Her story has been told here at Emory and by national media outlets. Fast forward a decade to Idiopathic Hypersomnia Awareness Week 2018 (September 3-9), organized by Hypersomnolence Australia. What this post deals with is essentially the correction of a date at the tail end of Anna’s story, but one with long-term implications Read more

Mini-monsters of cardiac regeneration

Jinhu Wang’s lab is not producing giant monsters. They are making fish with fluorescent hearts. Lots of cool Read more

Department of Human Genetics

Whole exome sequencing in IBD

Last year, pediatric gastroenterologist Subra Kugathasan gave an “old fashioned” grand rounds talk at Children’s Healthcare of Atlanta’s Egleston hospital, describing a family’s struggle with a multifaceted problem of autoimmunity.

Subra Kugathasan, MD

Now the Journal of Pediatric Gastroenterology and Nutrition paper, on how the genetic alteration underlying the family’s struggles was identified, is published. Kugathasan reports that the young man at the center of the paper is scheduled for allogeneic bone marrow transplant in the United States (but not in Atlanta) in the next couple months.

The list of troubles the members of the family had to deal with is long: gastrointestinal issues and food allergies, skin irritation, bacterial + yeast infections, and arthritis. The mother and her brother were affected to some degree, as well as all three of the kids (see tree diagram). The youngest brother is the “proband”, a geneticist’s term for starting point.

As determined by whole exome sequencing, the gene responsible is FOXP3, which controls the development of regulatory T cells. These are cells that restrain the rest of the immune system; if they aren’t functioning correctly, the immune system is at war with the rest of the body, like in this family.

The genetic variant identified was new — that’s why whole exome sequencing was necessary to find it. The authors conclude:

Supporting the utility of WES [whole exome sequencing] in familial clusters of atypical IBD [inflammatory bowel disease], this approach led to a definitive diagnosis in this case, resulting in a justifiable treatment strategy of allogeneic bone marrow transplantation, the treatment of choice for IPEX [Immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome].

Bone marrow transplant is a big deal; doctors are essentially wiping out the immune system then bringing it back, with several associated risks. So the decision to go ahead is not taken lightly. In general, whether bone marrow transplant — either autologous (patient donates back to self) or allogeneic (the donor is someone else) — is appropriate as a treatment for inflammatory bowel disease is still being investigated. Here, since a genetic origin is clear and there are autoimmune effects beyond the digestive system, it becomes the treatment of choice.

Posted on by Quinn Eastman in Immunology Leave a comment

Souped-up method for iPS cell reprogramming

Peng Jin and collaborators led by Da-Hua Chen from the Institute of Zoology, Chinese Academy of Sciences have a new paper in Stem Cell Reports. They describe a souped-up method for producing iPS cells (induced pluripotent stem cells).

Production of iPS cells in the laboratory is becoming more widespread. Many investigators, including those at Emory, are using the technology to establish “disease in a dish” models and derive iPS cells from patient donations, turning them into tools for personalized medicine research.

Read more

Posted on by Quinn Eastman in Cancer, Immunology, Neuro Leave a comment

Aging brains still need “chaperone” proteins

The word “chaperone” refers to an adult who keeps teenagers from acting up at a dance or overnight trip. It also describes a type of protein that can guard the brain against its own troublemakers: misfolded proteins that are involved in several neurodegenerative diseases.

Researchers at Emory University School of Medicine led by Shihua Li, MD, and Xiao-Jiang Li, MD, PhD have demonstrated that as animals age, their brains are more vulnerable to misfolded proteins, partly because of a decline in chaperone activity.

The researchers were studying a model of spinocerebellar ataxia, but the findings have implications for understanding other diseases, such as Alzheimer’s, Parkinson’s and Ray Ban outlet Huntington’s. They also identified targets for potential therapies: bolstering levels of either a particular chaperone or a growth factor in brain cells can protect against the toxic effects of misfolded proteins.

The results were published recently in the journal Neuron. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Gene duplication leads to obesity in childhood syndrome

A team of researchers has discovered a genetic syndrome that causes childhood obesity, intellectual disability and seizures. The syndrome comes from an “unbalanced” chromosomal translocation: affected individuals have additional copies of genes from one chromosome and fewer copies of genes from another.

The results were published this week in Proceedings of the National Academy of Sciences, Early Edition.

Katie Rudd, PhD, assistant professor of human http://www.raybanoutletes.com/ genetics at Emory University School of Medicine, is senior author of the paper. Research specialist Ian Goldlust, now a graduate student in the NIH-Oxford-Cambridge Scholars Program, is the first author. Co-authors include investigators from around the USA and Australia.

Rudd’s team was able to connect the contribution of one gene, GNB3, among many involved in the translocation, to the obesity aspect of the syndrome. Her lab created a mouse model with an extra copy of the GNB3 gene and found that the mice are obese. The mice are on average 6 percent (males) or 10 percent (females) heavier.

Rudd says her work was greatly assisted by collaboration with the Unique Rare Chromosome Disorder Support Group, a UK-based charity. Within Unique, a few parents had together found that their children had translocations involving the same chromosomes and similar symptoms. They contacted Rudd and helped her find additional affected families. Her study includes seven unrelated patients.

“It really was a group effort, and Unique was the linchpin,” she says. “Managing to find seven families with exactly the same rare translocation would have been extremely difficult otherwise.”

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Alphabet of modified DNA keeps expanding

Move over, A, G, C and T. The alphabet of epigenetic DNA modifications keeps getting longer.

A year ago, we described research on previously unseen information in the genetic code using this metaphor:

Imagine reading an entire book, but then realizing that your glasses did not allow you to distinguish “g” from “q.” What details did you miss?

Geneticists faced a similar problem with the recent discovery of a “sixth nucleotide” in the DNA alphabet. Two modifications of cytosine, one of the four bases http://www.raybani.com/ that make up DNA, look almost the same but mean different things. But scientists lacked a way of reading DNA, letter by letter, and detecting precisely where these modifications are found in particular tissues or cell types.

Now, a team… has developed and tested a technique to accomplish this task.

Well, Emory geneticist Peng Jin and his collaborator Chuan He at the University of Chicago are at it again.

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Cilia = not silly

Please check out the news story on “Cilia guide neuronal migration in  developing brain,” illustrating the dynamic role played by cilia. Cilia are tiny hair-like structures on the surfaces of cells, but in the brain they are acting more like radio antennae.

In developing mouse embryos, Emory and UNC researchers were able to see cilia extending and retracting as neurons migrate. The cilia appear to be receiving signals needed for neurons to find their places.

The Developmental Cell paper is here. As a bonus, we have a video featuring two of the paper’s authors, geneticist Tamara Caspary and “Neurotypical?” blogger Laura Mariani, a graduate student in Caspary’s lab.

Posted on by Quinn Eastman in Uncategorized Leave a comment

Flexibility and forgiveness during embryonic development

Geneticist Tamara Caspary’s laboratory has a recent paper in the journal Development showing how a developing mammalian embryo can correct a mispatterned neural tube over time. Former Genetics + Molecular Biology graduate student Chen-Ying Su, now a postdoctoral fellow at the Fred Hutchinson Cancer Research Center in Seattle, is the first author of the paper.

A molecule called “Sonic Hedgehog” is needed for proper patterning of the brain, spinal cord and eyes – it provides signals to the cells in the embryo, telling them what to become. Mutations that enhance Sonic Hedgehog signaling can lead to neural tube defects, some of the most common birth defects in humans, while those that diminish it can lead to holoprosencephaly, malformations of the brain and face. However, the majority of neural tube defects such as spina bifida do not come solely as a result of genetics – doctors think that getting enough (and possibly, not too much) of the B vitamin folic acid can prevent most of them.

Red = motor neuron precursor, green = later motor neuron marker
Mutation of Arl13b causes expansion of motor neurons (B and J)
Later deletion causes temporary expansion (C), corrected two days later (K)

Su and her colleagues examined mouse development in a situation where patterning of the neural tube is disrupted for a short time, because of a deletion in a gene (Arl13b), which helps to carry out Sonic Hedgehog’s instructions.

If Arl13b is not working starting from the beginning of development, embryos have an expansion of motor neurons, at the expense of other types of cells. The mutation leads to an open neural tube as well as abnormal eye, heart and limb development. However, if the deletion of Arl13b occurs on the ninth day, the embryo can recover proper patterning over the next few days. Mouse pregnancies last roughly three weeks.

Caspary says that while the relationship between Hedgehog signaling and neural tube defects is complicated, her lab’s recent work “does help define the time window during which we could non-surgically correct neural tube defects in utero.”

“In addition, it points to the importance of what we call “plasticity”- that cells can make incorrect decisions and correct them if still in a competency window, much like we think of adolescence,” she says. “It hints at the promise of stem cell research, that cells might be coaxed into other fates even though they start expressing tissue-specific markers. And it shows that the embryo is still much better at it than we are in a tissue culture dish.”

Posted on by Quinn Eastman in Uncategorized 1 Comment

The face behind a case

Last week Emory posted a news item about a case report published in the American Journal of Human Genetics. The paper described how geneticists at Emory, in cooperation with Sanford Burnham Medical Research Institute in San Diego, used “whole exome sequencing” — a sort of executive summary scan of the genome — to find the cause of a metabolic disease in a young boy.

The case was an illustration of the trend of whole exome sequencing, which is starting to enter clinical practice as a diagnostic technology. A photo of the patient, courtesy of his parents and Sanford Burnham, is a powerful reminder that within every case report, there’s a real person’s history.

Courtesy of Heather Buschman

“Over the years, we’ve come to know many families and their kids with glycosylation disorders. Here we can tell them their boy is a true ‘trail-blazer’ for this new disease,” says Hudson Freeze, director of the Genetic Disease program at Sanford Burnham. “Their smiles—that’s our bonus checks.”

Posted on by Quinn Eastman in Uncategorized Leave a comment
« Previous   1 2 3 4