Preparing for weapons production

At Lab Land, we have been thinking and writing a lot about plasma cells, which are like mobile microscopic weapons factories. Plasma cells secrete antibodies. They are immune cells that appear in the blood (temporarily) and the bone marrow (long-term). A primary objective for a vaccine – whether it’s against SARS-CoV-2, flu or something else -- is to stimulate the creation of plasma cells. A new paper from Jerry Boss’s lab in Nature Communications goes into Read more

SARS-CoV-2 culture system using human airway cells

Journalist Roxanne Khamsi had an item in Wired highlighting how virologists studying SARS-CoV-2 and its relatives have relied on Vero cells, monkey kidney cells with deficient antiviral responses. Vero cells are easy to culture and infect with viruses, so they are a standard laboratory workhorse. Unfortunately, they may have given people the wrong idea about the controversial drug hydroxychloroquine, Khamsi writes. In contrast, Emory virologist Mehul Suthar’s team recently published a Journal of Virology paper on culturing Read more

Triple play in science communication

We are highlighting Emory BCDB graduate student Emma D’Agostino, who is a rare triple play in the realm of science communication. Emma has her own blog, where she talks about what it’s like to have cystic fibrosis. Recent posts have discussed the science of the disease and how she makes complicated treatment decisions together with her doctors. She’s an advisor to the Cystic Fibrosis Foundation on patient safety, communicating research and including the CF community Read more

Department of Chemistry

More NMDA but less excitotoxicity? Now possible

Emory pharmacologists have discovered a new class of potential drugs that might allow them to have their cake and eat it too — with reference to NMDA receptors, important control sites in the brain for learning and memory.

Many researchers have wanted to enhance NMDA receptor signals to treat disorders such as schizophrenia. But at the same time, they need to avoid killing neurons with “excitotoxicity”, which comes from excess calcium entering the cell. Excitotoxicity is thought to be a major mechanism of cell death in stroke and traumatic brain injury.

Usually more sensitivity to NMDA activation and excess calcium go hand in hand. In a new Nature Chemical Biology paper, pharmacologist Stephen Traynelis and colleagues have identified a group of compounds that allow them to separate those two aspects of NMDA signaling.

These compounds appear to selectively decrease how much calcium (as opposed to sodium) flows through the NMDA ion channel. Traynelis says that the discovery opens up pharmacological possibilities for NMDA receptors similar to those for other receptor classes that are prominent drug targets, such as G-protein coupled receptors and acetylcholine receptors. With such receptors, the drugs are called “biased agonists” or “biased modulators” because they shift the balance of how the ion channel responds.

For NMDA receptors, how these newly identified compounds work on a molecular level needs to be explored, and could lead to the long-standing goal of NMDA-based neuroprotection for treatment of stroke/TBI, the authors note. Postdoc Riley Perszyk is first author, with cell biologist Gary Bassell and chemists Dennis Liotta and Lanny Liebeskind as co-authors.

Traynelis discussed this research in his Hodgkin Huxley Katz Prize Lecture to the Physiology 2019 conference in Scotland in December 2019 (the part about the new class of NMDA modulators starts at about 20 minutes).

Posted on by Quinn Eastman in Neuro Leave a comment

Potential HIV drugs hit three targets at once

Drug discovery veteran Dennis Liotta and his team continue to look for ways to fight against HIV. Working with pharmaceutical industry colleagues, he and graduate student Anthony Prosser have discovered compounds that are active against three different targets: immune cells’ entry gates for the virus (CCR5 and CXCR4), and the replication enzyme reverse transcriptase. That’s like one arrow hitting three bulls eyes. An advantage for these compounds: it could be less likely for viral resistance to develop.

For more, please go to the American Chemical Society — there will be a press conference from the ACS meeting in Denver on Monday, and live YouTube.

Posted on by Quinn Eastman in Immunology Leave a comment