A new term in biophysics: force/time = "yank"

A group of scientists have proposed to define change in force over time as Read more

Are immune-experienced mice better for sepsis research?

The goal is to make mouse immune systems and microbiomes more complex and more like those in humans, so the mice they can better model the deadly derangement of Read more

One more gene between us and bird flu

We’re always in favor of stopping a massive viral pandemic, or at least knowing more about what might make one Read more

David Kooby

Pilot human trial for image-guided cancer surgery tool

The Spectropen, a hand-held device developed by Emory and Georgia Tech scientists, was designed to help surgeons see the margins of tumors during surgery.

Some of the first results from procedures undertaken with the aid of the Spectropen in human cancer patients were recently published by the journal PLOS One. A related paper discussing image-guided removal of pulmonary nodules was just published in Annals of Thoracic Surgery.

To test the Spectropen, biomedical engineer Shuming Nie and his colleagues have been collaborating with thoracic surgeon Sunil Singhal at the University of Pennsylvania.

As described in the PLOS One paper, five patients with cancer in their lungs or chest participated in a pilot study at Penn. They received an injection of the fluorescent dye indocyanine green (ICG) before surgery.

ICG is already FDA-approved for in vivo diagnostics and now used to assess cardiac and liver function. ICG accumulates in tumors more than normal tissue because tumors have leaky blood vessels and membranes. The Spectropen shines light close to the infrared range on the tumor, causing it to glow because of the fluorescent dye.

[This technique resembles the 5-aminolevulinic acid imaging technique for brain tumor surgery being tested by Costas Hadjipanayis, described in Emory Medicine.]

In one case from the PLOS One article, the imaging procedure had some tangible benefits, allowing the surgeons to detect the spread of cancerous cells when other modes of imaging did not. Read more

Posted on by Quinn Eastman in Cancer Leave a comment