Mouse version of 3q29 deletion: insights into schizophrenia/ASD pathways

Emory researchers see investigating 3q29 deletion as a way of unraveling schizophrenia’s biological and genetic Read more

B cells off the rails early in lupus

Emory scientists could discern that in people with SLE, signals driving expansion and activation are present at an earlier stage of B cell differentiation than previously Read more

Head to head narcolepsy/hypersomnia study

At the sleep research meeting in San Antonio this year, there were signs of an impending pharmaceutical arms race in the realm of narcolepsy. The big fish in a small pond, Jazz Pharmaceuticals, was preparing to market its recently FDA-approved medication: Sunosi/solriamfetol. Startup Harmony Biosciences was close behind with pitolisant, already approved in Europe. On the horizon are experimental drugs designed to more precisely target the neuropeptide deficiency in people with classic narcolepsy type 1 Read more

Courtney Ardita

How beneficial bacteria talk to intestinal cells

Guest post from Courtney St Clair Ardita, MMG graduate student and co-author of the paper described. Happy Halloween!

In the past, reactive oxygen species were viewed as harmful byproducts of breathing oxygen, something that aerobic organisms just have to cope with to survive. Not any more. Scientists have been finding situations in humans and animals where cells create reactive oxygen species (ROS) as signals that play important parts in keeping the body healthy.

One example is when commensal or good bacteria in the gut cause the cells that line the inside of the intestines to produce ROS. Here, ROS production helps repair wounds in the intestinal lining and keeps the environment in the gut healthy. This phenomenon is not unique to human intestines. It occurs in organisms as primitive as fruit flies and nematodes, so it could be an evolutionarily ancient response. Examples of deliberately created and beneficial ROS can also be found in plants, sea urchins and amoebas.

Researchers led by Emory pathologist Andrew Neish have taken these findings a step further and identified the cellular components responsible for producing ROS upon encountering bacteria. Postdoctoral fellow Rheinallt Jones is first author on the paper that was recently published in The EMBO Journal. Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment