Head to head narcolepsy/hypersomnia study

At the sleep research meeting in San Antonio this year, there were signs of an impending pharmaceutical arms race in the realm of narcolepsy. The big fish in a small pond, Jazz Pharmaceuticals, was preparing to market its recently FDA-approved medication: Sunosi/solriamfetol. Startup Harmony Biosciences was close behind with pitolisant, already approved in Europe. On the horizon are experimental drugs designed to more precisely target the neuropeptide deficiency in people with classic narcolepsy type 1 Read more

Anti-inflammatory approach suppresses cancer metastasis in animal models

An anti-inflammatory drug called ketorolac, given before surgery, can promote long-term survival in animal models of cancer metastasis, a team of scientists has found. The research suggests that flanking chemotherapy with ketorolac or similar drugs -- an approach that is distinct from previous anti-inflammatory cancer prevention efforts -- can unleash anti-tumor immunity. The findings, published in Journal of Clinical Investigation, also provide a mechanistic explanation for the anti-metastatic effects of ketorolac, previously observed in human Read more

I3 Venture awards info

Emory is full of fledgling biomedical proto-companies. Some of them are actual corporations with employees, while others are ideas that need a push to get them to that point. Along with the companies highlighted by the Emory Biotech Consulting Club, Dean Sukhatme’s recent announcement of five I3 Venture research awards gives more examples of early stage research projects with commercial potential. This is the third round of the I3 awards; the first two were Wow! Read more

chickens

Max Cooper celebrated in Nature for 50 yrs of B cells

Emory’s Max Cooper was celebrated this week in Nature for his discovery of B cells in the 1960s, while working with Robert Good at the University of Minnesota.

Cooper in Good’s laboratory in the 1960s (source: National Library of Medicine)

B cells are immune cells that display antibodies on their surfaces, and can become antibody-secreting plasma cells. Without B cells: no antibodies to protect us against bacteria and viruses. Where B cells come from, and how they can develop such a broad repertoire of antibody tools, was a major puzzle of 20th century immunology, which Cooper contributed to solving. (See the Nature piece to learn why the “B” comes from the name of an organ in chickens.)

The authors did not mention that Cooper is now at Emory studying lampreys’ immune systems, which are curiously different from those of mammals. The similarities and differences provide insights into the evolution of our immune systems. In addition, scientists here are exploring whether lamprey’s antibody-like molecules might be turned into anticancer drugs.

Posted on by Quinn Eastman in Immunology Leave a comment

Present at the creation: immunology from chickens to lampreys

You can get far in biology by asking: “Which came first, the chicken or the egg?” Max Cooper discovered the basis of modern immunology by asking basic questions.

Cooper was selected for the 2012 Dean’s Distinguished Faculty Lecture and Award, and on Thursday evening dazzled an Emory University School of Medicine audience with a tour of his scientific career. He joined the Emory faculty in 2008 as a Georgia Research Alliance Eminent Scholar.

Max Cooper, MD

Cooper’s research on the development of the immune system, much of it undertaken before the era of cloned genes, formed the underpinnings of medical advances ranging from bone marrow transplants to monoclonal antibodies. More recently, his research on lampreys’ divergent immune systems has broadened our picture of how adaptive immunity evolved.

Cooper grew up in Mississippi and was originally trained as a pediatrician, and became interested in inherited disorders that disabled the immune system, leaving children vulnerable to infection. He joined Robert Good’s laboratory at the University of Minnesota, where he began research on immune system development in chickens.

In the early 1960s, Cooper explained, scientists thought that all immune cells developed in one place: the thymus. Working with Good, he showed that there are two lineages of immune cells in chickens: some that develop in the thymus (T cells) and other cells responsible for antibody production, which develop in the bursa of Fabricius (B cells). [On Thursday, he evoked chuckles by noting that a critical discovery that drove his work was published in the journal Poultry Science after being rejected by Science.]

Cooper moved on to the University of Alabama, Birmingham, and there made several discoveries related to how B cells develop. A collaboration with scientists at University College, London led to the identification of the places where B cells develop in mammals: fetal liver and adult bone marrow.

Cooper’s research on lampreys began in Alabama and has continued after he came to Emory in 2008. Primitive lampreys are thought to be an early offshoot on the evolutionary tree, before sharks, the first place where an immune system resembling those of mammals and birds is seen. Lampreys’ immune cells produce “variable lymphocyte receptors” that act like our antibodies, but the molecules look very different in structure. These molecules were eventually crystallized and their structure probed, in collaboration with Ian Wilson in San Diego.

Lampreys have variable lymphocyte receptors, which resemble our antibodies in function but not in structure

Cooper said he set out to figure out “which came first, T cells or B cells?” but ended up discovering something even more profound. He found that lampreys also have two separate types of immune cells, and the finding suggests that the two-arm nature of the immune system may have preceded the appearance of the particular features that mark those cells in evolution.

 

 

 

Posted on by Quinn Eastman in Immunology 1 Comment