Study finds ‘important implications’ to understanding immunity against COVID-19

New research from Emory University indicates that nearly all people hospitalized with COVID-19 develop virus-neutralizing antibodies within six days of testing positive. The findings will be key in helping researchers understand protective immunity against SARS-CoV-2 and in informing vaccine development. The test that Emory researchers developed also could help determine whether convalescent plasma from COVID-19 survivors can provide immunity to others, and which donors' plasma should be used. The antibody test developed by Emory and validated Read more

Emory plays leading role in landmark HIV prevention study of injectable long-acting cabotegravir

Emory University played a key role in a landmark international study evaluating the safety and efficacy of the long-acting, injectable drug, cabotegravir (CAB LA), for HIV prevention. The randomized, controlled, double-blind study found that cabotegravir was 69% more effective (95% CI 41%-84%) in preventing HIV acquisition in men who have sex with men (MSM) and transgender women who have sex with men when compared to the current standard of care, daily oral emtricitabine/tenofovir disoproxil fumarate Read more

Yerkes researchers find Zika infection soon after birth leads to long-term brain problems

Researchers from the Yerkes National Primate Research Center have shown Zika virus infection soon after birth leads to long-term brain and behavior problems, including persistent socioemotional, cognitive and motor deficits, as well as abnormalities in brain structure and function. This study is one of the first to shed light on potential long-term effects of Zika infection after birth. “Researchers have shown the devastating damage Zika virus causes to a fetus, but we had questions about Read more

Cheng-Kui Qu

Cells in “little brain” have distinctive metabolic needs

Cells’ metabolic needs are not uniform across the brain, researchers have learned. “Knocking out” an enzyme that regulates mitochondria, cells’ miniature power plants, specifically blocks the development of the mouse cerebellum more than the rest of the brain.

The results were published in Science Advances.

“This finding will be tremendously helpful in understanding the molecular mechanisms underlying developmental disorders, degenerative diseases, and even cancer in the cerebellum,” says lead author Cheng-Kui Qu, MD, PhD, professor of pediatrics at Emory University School of Medicine, Winship Cancer Institute and Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta.

The cerebellum or “little brain” was long thought to be involved mainly in balance and complex motor functions. More recent research suggests it is important for decision making and emotions. In humans, the cerebellum grows more than the rest of the brain in the first year of life and its development is not complete until around 8 years of age. The most common malignant brain tumor in children, medulloblastoma, arises in the cerebellum.

Qu and his colleagues have been studying an enzyme, PTPMT1, which controls the influx of pyruvate – a source of energy derived from carbohydrates – into mitochondria. They describe pyruvate as “the master fuel” for postnatal cerebellar development.

Cells can get energy by breaking down sugar efficiently, through mitochondria, or more wastefully in a process called glycolysis. Deleting PTPMT1 provides insight into which cells are more sensitive to problems with mitochondrial metabolism. A variety of mitochondrial diseases affect different parts of the body, but the brain is especially greedy for sugar; it never really shuts off metabolically. When someone is at rest, the brain uses a quarter of the body’s blood sugar, despite taking up just 2 percent of body weight in an adult. More here.

Also, see this 2017 item from Stanford on the cerebellum (Nature paper).

Posted on by Quinn Eastman in Neuro Leave a comment

Bad neighbors cause bad blood -> cancer

Certain DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells, cancer researchers have found.

Many cancer-driving mutations are “cell-autonomous,” meaning the change in a cell’s DNA makes that same cell grow more rapidly. In contrast, an indirect neighbor cell effect was observed in a mouse model of Noonan syndrome, an inherited disorder that increases the risk of developing leukemia.

bone-marrow-300

In mouse bone marrow, mesenchymal stem cells (red), which normally nurture blood stem cells, produce a signal that is attractive for monocytes. The monocytes (green) prod nearby blood stem cells to proliferate, leading to leukemia. From Dong et al Nature (2016).

The findings were published Wednesday, October 26 in Nature.

The neighbor cell effect could be frustrating efforts to treat leukemias in patients with Noonan syndrome and a related condition, juvenile myelomonocytic leukemia (JMML). That’s because bone marrow transplant may remove the cancerous cells, but not the cause of the problem, leading to disease recurrence. However, the researchers show that a class of drugs can dampen the cancer-driving neighbor effect in mice. One of the drugs, maraviroc, is already FDA-approved against HIV infection.

“Our research highlights the importance of the bone marrow microenvironment,” says Cheng-Kui Qu, MD, PhD, professor of pediatrics at Emory University School of Medicine, Winship Cancer Institute and Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta. “We found that a disease-associated mutation, which disturbs the niches where blood stem cell development occurs, can lead to leukemia formation.”

Editorial note: This Nature News + Views, aptly titled “Bad neighbors cause bad blood,” explains JMML, and how the relapse rate after bone marrow transplant is high (about 50 percent). It also notes that a variety of genetic alterations provoke leukemia when engineered into bone marrow stromal cells in mice (like this), but Qu and his colleagues described one that is associated with a known human disease.

Noonan syndrome often involves short stature, distinctive facial features, congenital heart defects and bleeding problems. It occurs in between one in 1000 to one in 2500 people, and can be caused by mutations in several genes. The most common cause is mutations in the gene PTPN11. Children with Noonan syndrome are estimated to have a risk of developing leukemia or other cancers that is eight times higher than their peers.
Read more

Posted on by Quinn Eastman in Cancer, Immunology Leave a comment