Saliva-based SARS-CoV-2 antibody testing

As the Atlanta area recovers from Zeta, we’d like to highlight this Journal of Clinical Microbiology paper about saliva-based SARS-CoV-2 antibody testing. It was a collaboration between the Hope Clinic and investigators at Johns Hopkins, led by epidemiologist Christopher Heaney. Infectious disease specialists Matthew Collins, Nadine Rouphael and several colleagues from Emory are co-authors. They organized the collection of saliva and blood samples from Emory COVID-19 patients at several stages: being tested, hospitalized, and recovered. Read more

Peeling away pancreatic cancers' defenses

A combination immunotherapy approach that gets through pancreatic cancers’ extra Read more

Immune cell activation in severe COVID-19 resembles lupus

In severe cases of COVID-19, Emory researchers have been observing an exuberant activation of B cells, resembling acute flares in systemic lupus erythematosus (SLE), an autoimmune disease. The findings point towards tests that could separate some COVID-19 patients who need immune-calming therapies from others who may not. It also may begin to explain why some people infected with SARS-CoV-2 produce abundant antibodies against the virus, yet experience poor outcomes. The results were published online on Oct. Read more

Chemistry and Biology

New opportunities in modulating microRNA

Emory geneticist Peng Jin and his colleagues have a review in the June 25, 2010 issue of Chemistry and Biology exploring whether microRNAs offer new possibilities for pharmacology.

MicroRNAs directly regulate other genes

The microRNA pathway represents both a way for scientists to “knock down” the activity of just one gene in the laboratory, and a major way for cells to regulate their genes during development.

MicroRNAs add a big wallop of complexity on top of the standard model of molecular biology, where the information in DNA is made into RNA, and RNAs make proteins. MicroRNAs don’t get turned into protein, but directly regulate other genes.

Andrew Fire and Craig Mello received the 2006 Nobel Prize in Medicine for their discovery that short pieces of RNA, when introduced into cells, can silence genes. This “RNA interference” tactic hijacks the natural machinery inside the cell that microRNAs use.

In 2008, Jin and coworkers published in Nature Biotechnology their discovery that certain antibiotics called fluoroquinolones (ciprofloxacin is one) can make the RNA interference process work more efficiently — in general. In the review, Jin notes that scientists are starting to look for drugs that act more selectively, disrupting or enhancing a particular microRNA rather than many at once:

Since miRNAs play major roles in nearly every cellular process, the identification and characterization of small-molecule modulators of the RNAi/miRNA pathway will yield fresh insights into fundamental mechanisms behind human disease… Moreover, these RNAi modulators, particularly RNAi enhancers, could potentially facilitate the development of RNA interference as a tool for biomedical research and therapeutic interventions.

Posted on by Quinn Eastman in Uncategorized Leave a comment