Study finds ‘important implications’ to understanding immunity against COVID-19

New research from Emory University indicates that nearly all people hospitalized with COVID-19 develop virus-neutralizing antibodies within six days of testing positive. The findings will be key in helping researchers understand protective immunity against SARS-CoV-2 and in informing vaccine development. The test that Emory researchers developed also could help determine whether convalescent plasma from COVID-19 survivors can provide immunity to others, and which donors' plasma should be used. The antibody test developed by Emory and validated Read more

Emory plays leading role in landmark HIV prevention study of injectable long-acting cabotegravir

Emory University played a key role in a landmark international study evaluating the safety and efficacy of the long-acting, injectable drug, cabotegravir (CAB LA), for HIV prevention. The randomized, controlled, double-blind study found that cabotegravir was 69% more effective (95% CI 41%-84%) in preventing HIV acquisition in men who have sex with men (MSM) and transgender women who have sex with men when compared to the current standard of care, daily oral emtricitabine/tenofovir disoproxil fumarate Read more

Yerkes researchers find Zika infection soon after birth leads to long-term brain problems

Researchers from the Yerkes National Primate Research Center have shown Zika virus infection soon after birth leads to long-term brain and behavior problems, including persistent socioemotional, cognitive and motor deficits, as well as abnormalities in brain structure and function. This study is one of the first to shed light on potential long-term effects of Zika infection after birth. “Researchers have shown the devastating damage Zika virus causes to a fetus, but we had questions about Read more

Chemistry and Biology

New opportunities in modulating microRNA

Emory geneticist Peng Jin and his colleagues have a review in the June 25, 2010 issue of Chemistry and Biology exploring whether microRNAs offer new possibilities for pharmacology.

MicroRNAs directly regulate other genes

The microRNA pathway represents both a way for scientists to “knock down” the activity of just one gene in the laboratory, and a major way for cells to regulate their genes during development.

MicroRNAs add a big wallop of complexity on top of the standard model of molecular biology, where the information in DNA is made into RNA, and RNAs make proteins. MicroRNAs don’t get turned into protein, but directly regulate other genes.

Andrew Fire and Craig Mello received the 2006 Nobel Prize in Medicine for their discovery that short pieces of RNA, when introduced into cells, can silence genes. This “RNA interference” tactic hijacks the natural machinery inside the cell that microRNAs use.

In 2008, Jin and coworkers published in Nature Biotechnology their discovery that certain antibiotics called fluoroquinolones (ciprofloxacin is one) can make the RNA interference process work more efficiently — in general. In the review, Jin notes that scientists are starting to look for drugs that act more selectively, disrupting or enhancing a particular microRNA rather than many at once:

Since miRNAs play major roles in nearly every cellular process, the identification and characterization of small-molecule modulators of the RNAi/miRNA pathway will yield fresh insights into fundamental mechanisms behind human disease… Moreover, these RNAi modulators, particularly RNAi enhancers, could potentially facilitate the development of RNA interference as a tool for biomedical research and therapeutic interventions.

Posted on by Quinn Eastman in Uncategorized Leave a comment