Stage fright: don't get over it, get used to it

Many can feel empathy with the situation Banerjee describes: facing “a room full of scientists, who for whatever reason, did not look very happy that Read more

Beyond birthmarks and beta blockers, to cancer prevention

Ahead of this week’s Morningside Center conference on repurposing drugs, we wanted to highlight a recent paper in NPJ Precision Oncology by dermatologist Jack Arbiser. It may represent a new chapter in the story of the beta-blocker propranolol. Several years ago, doctors in France accidentally discovered that propranolol is effective against hemangiomas: bright red birthmarks made of extra blood vessels, which appear in infancy. Hemangiomas often don’t need treatment and regress naturally, but some can lead Read more

Drying up the HIV reservoir

Wnt is one of those funky developmental signaling pathways that gets re-used over and over again, whether it’s in the early embryo, the brain or the Read more

cancer genomics

Invasive cancer cells marked by distinctive mutations

What does it take to be a leader – of cancer cells?

Adam Marcus and colleagues at Winship Cancer Institute are back, with an analysis of mutations that drive metastatic behavior among groups of lung cancer cells. The findings were published this week on the cover of Journal of Cell Science, and suggest pharmacological strategies to intervene against or prevent metastasis.

Marcus and former graduate student Jessica Konen previously developed a technique for selectively labeling “leader” or “follower” lung cancer cells in culture, using lasers that turn a fluorescent protein from green to red. The leaders are more adventurous and invasive, but the followers support the leaders and help them survive. Check out our prize-winning video and their 2017 Nature Communications paper.

The magenta cells have leader-specific mutated Arp3 protein, while the green cells are unmodified followers.

The new research harnesses their technique to track the mutations that are specific to leader or follower cells. It was a collaboration with the lab of Paula Vertino, formerly at Winship and now at University of Rochester. Cancer Biology graduate students Elizabeth Zoeller and Brian Pedro led the work, with sophisticated genomics from Ben Barwick.

One of the leader-specific mutations was in Arp3, part of a protein complex that promotes the protrusion of cellular blobs, facilitating migration. The researchers took the mutated Arp3 protein from leader cells and forced its production in follower cells. In the cover image, the magenta cells on the outside are the ones with the mutated Arp3 protein, while the green cells are unmodified. Read more

Posted on by Quinn Eastman in Cancer Leave a comment

Statins, prostate cancer and mitochondria

In honor of Fathers’ Day, we are examining a connection between two older-male-centric topics: statins and prostate cancer.

Statins are a very widely prescribed class of drugs used to lower cholesterol levels, for the purpose of preventing cardiovascular disease. In cell culture, they appear to kill prostate cancer cells, but the epidemiological evidence is murkier. Statin effects on prostate cancer incidence have been up in the air, but recent reports point to the possibility that starting statins may slow progression, after a man has been diagnosed with prostate cancer.

Winship Cancer Institute researchers have some new results that shed some light on this effect. John Petros, Rebecca Arnold and Qian Sun have found that mutations in mitochondrial DNA make prostate cancer cells resistant to cell death induced by simvastatin [Zocor, the most potent generic statin]. Sun recently presented the results at the American Urological Association meeting in Orlando.

In other forms of cancer such as breast and lung cancer, genomic profiling can determine what DNA mutations are driving cancer growth and what drugs are likely to be effective in fighting the cancer. The prostate cancer field has not reached the same point, partly because prostate cancers are not generally treated with chemotherapy until late in the game, Petros says. But potentially, information on mitochondrial mutations could guide decisions on whether to initiate statin (or another) therapy.

“This is part of our soapbox,” he says. “When we are looking at mutational effects on prostate cancer, let’s be sure to include the mitochondrial genome.”

Winship’s Carlos Moreno and his colleagues are working on the related question of biomarkers that predict prostate cancer progression, after prostatectomy surgery and potentially after just a biopsy.

Read more

Posted on by Quinn Eastman in Cancer Leave a comment