Anti-inflammatory approach suppresses cancer metastasis in animal models

An anti-inflammatory drug called ketorolac, given before surgery, can promote long-term survival in animal models of cancer metastasis, a team of scientists has found. The research suggests that flanking chemotherapy with ketorolac or similar drugs -- an approach that is distinct from previous anti-inflammatory cancer prevention efforts -- can unleash anti-tumor immunity. The findings, published in Journal of Clinical Investigation, also provide a mechanistic explanation for the anti-metastatic effects of ketorolac, previously observed in human Read more

I3 Venture awards info

Emory is full of fledgling biomedical proto-companies. Some of them are actual corporations with employees, while others are ideas that need a push to get them to that point. Along with the companies highlighted by the Emory Biotech Consulting Club, Dean Sukhatme’s recent announcement of five I3 Venture research awards gives more examples of early stage research projects with commercial potential. This is the third round of the I3 awards; the first two were Wow! Read more

Take heart, Goldilocks -- and get more sleep

Sleeping too little or too much increases the risk of cardiovascular events and death in those with coronary artery disease, according to a new paper from Emory Clinical Cardiovascular Research Institute. Others have observed a similar U-shaped risk curve in the general population, with respect to sleep duration. The new study, published in American Journal of Cardiology, extends the finding to people who were being evaluated for coronary artery disease. Arshed Quyyumi, MD and colleagues analyzed Read more

California State Senate

From Emory scientist to California policy analyst

Don’t call them alternative careers — since most graduate students in the biomedical sciences won’t end up as professors. Since I found a career outside the laboratory myself, I like to keep an eye out for examples of Emory people who have made a similar jump. [Several more in this Emory Magazine feature, which mentions the BEST program, aimed at facilitating that leap.]

Debra Cooper, PhD

Debra Cooper, PhD

After a postdoc in Texas, former Emory neuroscience graduate student Debra Cooper was awarded a California Council on Science and Technology fellowship to work with the California State Senate staff, and is now a policy consultant there. More about her work can also be found at the CCST blog.

Describe your position as policy consultant now. What types of things do you work on? How does your experience in neuroscience/drug abuse research fit in?

As a policy consultant at the California State Senate Office of Research, I function as a bridge between policy and the technical information that informs public policy. A large component of my time is spent translating research and linking it with relevant policies and regulations. I then synthesize this information and disseminate it to the appropriate audiences through memoranda, reports, or presentations. Sometimes this information is used to advise and make recommendations for legislative ideas.

My main assignments deal with human services (i.e., public services provided by governmental organizations) and veterans affairs. As such, not every project that I work on is directly related to neuroscience, but I often find overlap between my assignments and my academic background. For instance, the intersection of mental health and veterans affairs services is an important topic that bridges my backgrounds. Even when I’m working on issues that don’t directly link to mental health, the years that I spent analyzing research and statistics comes in handy when evaluating relevant documents.

Describe your graduate research at Emory.

I had co-advisors while working on my PhD at Emory – Drs. David Weinshenker and Leonard Howell. My dissertation research focused on one question answered with two different model animals: rats (Weinshenker lab) and squirrel monkeys (Howell lab). I was studying the effectiveness of a drug, nepicastat, in reducing rates of relapse to cocaine abuse. Nepicastat blocks an enzyme (dopamine beta-hydoxylase) which is crucial for converting the neurochemical dopamine into the neurochemical norepinephrine. Both of these neurochemicals are involved in responses to cocaine, and we hypothesized that nepicastat could help in regulating these neurochemicals to prevent relapse. Read more

Posted on by Quinn Eastman in Neuro, Uncategorized Leave a comment