Big data with heart, for psychiatric disorders

Heart rate variability can be used to monitor psychiatric Read more

Unlocking schizophrenia biology via genetics

A genetic risk factor for schizophrenia could be a key to unlock the biology of the complex Read more

Brain circuitry linked to social connection and desire to cuddle

Just like humans, prairie voles are capable of consistently forming social bonds with mating partners, a rare trait in the animal Read more

blood vessels

Direct reprogramming into endothelial cells

Direct reprogramming has become a trend in the regenerative medicine field. It means taking readily available cells, such as skin cells or blood cells, and converting them into cells that researchers want for therapeutic purposes, skipping the stem cell stage.

In a way, this approach follows in Nobel Prize winner Shinya Yamanaka’s footsteps, but it also tunnels under the mountain he climbed. Direct reprogramming has been achieved for target cell types such as neurons and insulin-producing beta cells.

Young-sup Yoon, MD, PhD

In Circulation Research, Emory stem cell biologist Young-sup Yoon, MD, PhD and colleagues recently reported converting human skin fibroblast cells into endothelial cells, which line and maintain the health of blood vessels.

Once reprogrammed, a patient’s own cells could potentially be used to treat conditions such as peripheral artery disease, or to form vascular grafts. Exactly how reprogrammed cells should be deployed clinically still needs to be worked out.

In cardiovascular disease, many clinical trials have been performed using bone marrow cells that were not reprogrammed. Emory readers may be familiar with studies conducted by Arshed Quyyumi, MD and colleagues, in which treatment was delivered after patients’ heart attacks. In those studies, sorted progenitor cells, some of which could become endothelial cells, were introduced into the heart. To provide the observed effects, the introduced cells were more likely supplying supportive growth factors.

In contrast, Yoon’s team is able to produce cells that already have endothelial character hammered into them. The authors have applied for a patent. The co-first authors were instructor Sang-Ho Lee, PhD and Changwon Park, PhD, assistant professor of pediatrics. Read more

Posted on by Quinn Eastman in Heart Leave a comment

CV cell therapy: bridge between nurse and building block

In the field of cell therapy for cardiovascular diseases, researchers see two main ways that the cells can provide benefits:

*As building blocks – actually replacing dead cells in damaged tissues

*As nurses — supplying growth factors and other supportive signals, but not becoming part of damaged tissues

Tension between these two roles arises partly from the source of the cells.

Many clinical trials have used bone marrow-derived cells, and the benefits here appear to come mostly from the “paracrine” nurse function. A more ambitious approach is to use progenitor-type cells, which may have to come from iPS cells or cardiac stem cells isolated via biopsy-like procedures. These cells may have a better chance of actually becoming part of the damaged tissue’s muscles or blood vessels, but they are more difficult to obtain and engineer.

A related concern: available evidence suggests introduced cells – no matter if they are primarily serving as nurses or building blocks — don’t survive or even stay in their target tissue for long.

Transplanted cells were labeled with a red dye, while a perfused green dye shows the extent of functional blood vessels. Blue is DAPI, staining nuclear DNA. Yellow arrows indicate where red cells appear to contribute to blood vessels.

Transplanted cells were labeled with a red dye, while a perfused green dye shows the extent of functional blood vessels. Blue is DAPI, staining nuclear DNA. Yellow arrows indicate where red cells appear to contribute to green blood vessels. Courtesy of Sangho Lee.

Stem cell biologist Young-sup Yoon and colleagues recently published a paper in Biomaterials in which the authors use chitosan, a gel-like carbohydrate material obtained by processing crustacean shells, to aid in cell retention and survival. Ravi Bellamkonda’s lab at Georgia Tech contributed to the paper.

More refinement of these approaches are necessary before clinical use,  but it illustrates how engineered mixtures of progenitor cells and supportive materials are becoming increasingly sophisticated and complicated.

The chitosan gel resembles the alginate material used to encapsulate cells by the Taylor lab. Yoon’s team was testing efficacy in a hindlimb ischemia model, in which a mouse’s leg is deprived of blood. This situation is analogous to peripheral artery disease, and the readout of success is the ability of experimental treatments to regrow capillaries in the damaged leg.

The current paper builds a bridge between the nurse and building block approaches, because the researchers mix two complementary types of cells: an angiogenic one derived from bone marrow cells that expands existing blood vessels, and a vasculogenic one derived from embryonic stem cells that drives formation of new blood vessels. Note: embryonic stem cells were of mouse origin, not human. Read more

Posted on by Quinn Eastman in Heart Leave a comment

How white blood cells limit muscle regeneration

A paper from cardiologist Aloke Finn and colleagues (published Wednesday, Aug. 5 in Nature Communications) describes how the protein CD163, produced by macrophages, puts the brakes on muscle repair after ischemic injury in mice. Here’s why we think this paper is interesting.

*Speculatively, there are connections to the recent wave of “young blood cures old body” parabiosis research. Increased CD163 is a marker of aging in humans. Maybe low levels of CD163 are part of how young blood is restorative.

*Translational potential — it wouldn’t be too hard to make an antibody against human CD163. Something that blocks CD163 could possibly be used to treat muscle breakdown, which occurs in response to injury, inactivity and in diseases such as cancer and diabetes.

*Finn says his team was surprised to find that mice lacking CD163, tested in experiments where blood flow is restricted in one leg, showed increased blood vessel and muscle growth in the other leg. It looks like part of CD163’s role is to limit muscle regeneration to the site of injury. Read more

Posted on by Quinn Eastman in Heart Leave a comment