Warren symposium follows legacy of geneticist giant

If we want to understand how the brain creates memories, and how genetic disorders distort the brain’s machinery, then the fragile X gene is an ideal place to start. That’s why the Stephen T. Warren Memorial Symposium, taking place November 28-29 at Emory, will be a significant event for those interested in neuroscience and genetics. Stephen T. Warren, 1953-2021 Warren, the founding chair of Emory’s Department of Human Genetics, led an international team that discovered Read more

Mutations in V-ATPase proton pump implicated in epilepsy syndrome

Why and how disrupting V-ATPase function leads to epilepsy, researchers are just starting to figure Read more

Tracing the start of COVID-19 in GA

At a time when COVID-19 appears to be receding in much of Georgia, it’s worth revisiting the start of the pandemic in early 2020. Emory virologist Anne Piantadosi and colleagues have a paper in Viral Evolution on the earliest SARS-CoV-2 genetic sequences detected in Georgia. Analyzing relationships between those virus sequences and samples from other states and countries can give us an idea about where the first COVID-19 infections in Georgia came from. We can draw Read more

blood transfusion

A model for fetal hemolytic disease

Part of standard prenatal care for a pregnant woman is to test her blood for antibodies against the red blood cells of her baby, such as anti-Rhesus D antibodies. An incompatibility can result in hemolytic disease, where the mother’s antibodies attack fetal red blood cells. The development of a therapy for Rhesus D incompatibility was one of the major success stories of medical research in the 1960s.

Jeanne Hendrickson, MD

Although Rhesus D is the most common troublemaker, other anti-red blood cell antibodies such as those against the Kell protein can also cause hemolytic disease of the fetus. The origin is often from sensitization related to previous blood transfusions. At a recent seminar, pediatric hematologist Jeanne Hendrickson described a recent case that illustrates how serious this condition can be. Hendrickson is associate medical director of Children’s Healthcare of Atlanta’s Blood and Tissue Bank, and an assistant professor in pediatrics and pathology at Emory.

Early in her second pregnancy, a woman had developed anti-Kell antibodies, causing the baby to develop anemia and the early stages of fetal heart failure. Several intrauterine transfusions, which carry a risk of miscarriage, were required. At one point, Hendrickson says, the mother was in the http://www.raybani.com/ hospital for a week while doctors looked for compatible blood. When the baby was born, he was very pale and continues to need medical care, because anti-Kell antibodies interfere with red blood cell development.

Unfortunately, there is nothing analogous to RhoGam (the standard therapy for Rhesus D) for this situation. Today, 6 out of 1000 pregnancies are affected by red blood cell immunization. And despite its success, Hendrickson says some mystery remains about exactly how RhoGam works.

First author Sean Stowell, MD, PhD

First author Sean Stowell, MD, PhD

She and her colleagues have a new paper in the journal Blood describing an animal model for hemolytic disease of the fetus and newborn involving anti-Kell antibodies. Postdoc Sean Stowell is the first author Ray Ban outlet of the paper. This is the first animal model of anti-red blood cell antibodies generated through pregnancy – previous rabbit experiments dating back to the 1950s involved transfusions and/or immunizations.

The model uses mice that have been engineered to produce a human form of Kell protein on their red blood cells. When male mice positive for this extra gene mate with females who don’t have it, the litters are smaller and some of the pups are anemic or stillborn. The authors say that the model could provide a platform for studying how anti-red blood cell antibodies develop, as well as potential therapies.

Another recent paper from Stowell and Hendrickson describes a similar mouse model involving anti-red blood cell antibodies that develop because of transfusions rather than pregnancy. Between 3 and 5 percent of patients who get a blood transfusion will develop antibodies against Ray Ban online something on the red blood cells they received, making future transfusions possibly more problematic.

At the seminar, we learned that Hendrickson will be moving to Yale University later this summer. We wish her good luck at her new job.

 

 

 

 

Posted on by Quinn Eastman in Immunology Leave a comment